CVPR2020 | 深蘭科技夜間檢測(cè)挑戰(zhàn)賽兩冠一亞,為自動(dòng)駕駛保駕護(hù)航
3. 數(shù)據(jù)增強(qiáng)
該團(tuán)隊(duì)發(fā)現(xiàn) Pixel-level 的增強(qiáng)方式導(dǎo)致了性能結(jié)果大幅下降,因此沒(méi)有在這個(gè)方向繼續(xù)嘗試。
而圖像增強(qiáng)方式 Retinex,從視覺(jué)上看帶來(lái)了圖像增強(qiáng),但是該方法可能破壞了原有圖片的結(jié)構(gòu)信息,導(dǎo)致最終結(jié)果沒(méi)有提升。
于是,該團(tuán)隊(duì)最終選擇了 Spatial-level 的增強(qiáng)方式,使得結(jié)果有一定的提升。
實(shí)驗(yàn)細(xì)節(jié)
1. 將 Cascade rcnn + DCN + FPN 作為 baseline;
2. 將原有 head 改為 Double head;
3. 將 CBNet 作為 backbone;
4. 使用 cascade rcnn COCO-Pretrained weight;
5. 數(shù)據(jù)增強(qiáng);
6. 多尺度訓(xùn)練 + Testing tricks。
實(shí)驗(yàn)結(jié)果
下圖展示了該團(tuán)隊(duì)使用的方法在本地驗(yàn)證集上的結(jié)果:
該團(tuán)隊(duì)將今年的成績(jī)與去年 ICCV 2019 同賽道冠軍算法進(jìn)行對(duì)比,發(fā)現(xiàn)在不使用額外數(shù)據(jù)集的情況下,去年單模型在 9 個(gè)尺度的融合下達(dá)到 11.06,而該團(tuán)隊(duì)的算法在只用 2 個(gè)尺度的情況下就可以達(dá)到 10.49。
未來(lái)工作
該團(tuán)隊(duì)雖然獲得了不錯(cuò)的成績(jī),但也基于已有的經(jīng)驗(yàn)提出了一些未來(lái)工作方向:
1. 由于數(shù)據(jù)的特殊性,該團(tuán)隊(duì)嘗試使用一些增強(qiáng)方式來(lái)提高圖片質(zhì)量、亮度等屬性,使圖片中的行人更易于檢測(cè)。但結(jié)果證明這些增強(qiáng)方式可能破壞原有圖片結(jié)構(gòu),效果反而降低。該團(tuán)隊(duì)相信會(huì)有更好的夜間圖像處理辦法,只是還需要更多研究和探索。
2. 在允許使用之前幀信息的賽道二中,該團(tuán)隊(duì)僅使用了一些簡(jiǎn)單的 IoU 信息。由于收集這個(gè)數(shù)據(jù)集的攝像頭一直在移動(dòng),該團(tuán)隊(duì)之前在類似的數(shù)據(jù)集上使用過(guò)一些 SOTA 的方法,卻沒(méi)有取得好的效果。他們認(rèn)為之后可以在如何利用時(shí)序幀信息方面進(jìn)行深入的探索。
3. 該領(lǐng)域存在大量白天行人檢測(cè)的數(shù)據(jù)集,因此該團(tuán)隊(duì)認(rèn)為之后可以嘗試 Domain Adaption 方向的方法,以充分利用行人數(shù)據(jù)集。
參考文獻(xiàn):
[1] Lin T Y , Dollár, Piotr, Girshick R , et al. Feature Pyramid Networks for Object Detection[J]. 2016.
[2] Dai J, Qi H, Xiong Y, et al. Deformable Convolutional Networks[J]. 2017.
[3] Cai Z , Vasconcelos N . Cascade R-CNN: Delving into High Quality Object Detection[J]. 2017.
[4] Xie S , Girshick R , Dollar P , et al. Aggregated Residual Transformations for Deep Neural Networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2017.
[5] Bochinski E , Eiselein V , Sikora T . High-Speed tracking-by-detection without using image information[C]// 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2017.
[6] Henriques J F , Caseiro R , Martins P , et al. High-Speed Tracking with Kernelized Correlation Filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
[7] Song G , Liu Y , Wang X . Revisiting the Sibling Head in Object Detector[J]. 2020.
[8] Li A , Yang X , Zhang C . Rethinking Classification and Localization for Cascade R-CNN[J]. 2019.
[9] Wu, Y., Chen, Y., Yuan, L., Liu, Z., Wang, L., Li, H., & Fu, Y. (2019). Rethinking Classification and Localization in R-CNN. ArXiv, abs/1904.06493.
[10] Liu, Y., Wang, Y., Wang, S., Liang, T., Zhao, Q., Tang, Z., & Ling, H. (2020). CBNet: A Novel Composite Backbone Network Architecture for Object Detection. ArXiv, abs/1909.03625.
發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
技術(shù)文庫(kù)
最新活動(dòng)更多
-
免費(fèi)參會(huì)立即報(bào)名>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
-
精彩回顧立即查看>> 【在線研討會(huì)】普源精電--激光原理應(yīng)用與測(cè)試解決方案
-
精彩回顧立即查看>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
精彩回顧立即查看>> 【線上直播】新能源汽車熱管理行業(yè)應(yīng)用新進(jìn)展
-
精彩回顧立即查看>> 【線上直播】西門子電池行業(yè)研討會(huì)-P4B如何加速電池開(kāi)發(fā)
-
精彩回顧立即查看>> 【線下會(huì)議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
- 1 行業(yè)競(jìng)爭(zhēng)加劇,汽車芯片卷向高算力?
- 2 中國(guó)第一輛無(wú)人駕駛汽車:從實(shí)驗(yàn)室到萬(wàn)里長(zhǎng)江的狂飆三十年
- 3 當(dāng)凱迪拉克只要15萬(wàn)元,為什么還是沒(méi)人買豪華品牌
- 4 智能座艙:一塊屏幕的進(jìn)化史
- 5 重倉(cāng)特斯拉的木頭姐,忽視了一個(gè)重磅玩家
- 6 比亞迪想當(dāng)兩輪電動(dòng)車“賣鏟人”
- 7 自動(dòng)駕駛科普十問(wèn):什么是自動(dòng)駕駛?將給我們帶來(lái)哪些影響?
- 8 百度盯上新“蛋糕”,蘿卜快跑要在歐洲快跑
- 9 無(wú)人快遞配送車的前景:快遞4月破500億件,無(wú)人車如何撕開(kāi)萬(wàn)億市場(chǎng)的口子?
- 10 固態(tài)激光雷達(dá)會(huì)是組合輔助駕駛的新寵嗎?