Waymo無人車是如何進(jìn)行行為預(yù)測的?
通過這個過程,神經(jīng)網(wǎng)絡(luò)獲得了各種向量之間的關(guān)系。例如汽車進(jìn)入十字路口或行人接近人行橫道時,就會發(fā)生這些關(guān)系。通過學(xué)習(xí)道路特征和對象軌跡之間的這種相互作用,VectorNet 能夠通過學(xué)習(xí)不同的行為模式來更好地預(yù)測其他道路參與者的行為。
為了進(jìn)一步增強(qiáng) VectorNet 的功能,waymo對該系統(tǒng)進(jìn)行了訓(xùn)練,以從模糊線索中學(xué)習(xí),以推斷出車輛周圍接下來會發(fā)生什么,從而做出更好的行為預(yù)測。例如,重要的場景信息通常在行駛時會被遮擋,例如樹葉遮住停車標(biāo)志。當(dāng)人類駕駛員遇到這種情況時,即使他們看不見,他們也可以借鑒過去的經(jīng)驗(yàn)來推斷發(fā)生某事的可能性。通過在訓(xùn)練過程中隨機(jī)掩蓋地圖特征(例如在四通路口的停車標(biāo)志并要求網(wǎng)絡(luò)完成),VectorNet可以進(jìn)一步提高Waymo Driver對周圍世界的了解,并為意外做好準(zhǔn)備。
驗(yàn)證VectorNet的性能
將VectorNet與ResNet進(jìn)行比較,發(fā)現(xiàn)VectorNet的計算和位移誤差有所改善。與最先進(jìn)且使用最廣泛的ConvNets之一ResNet-18相比,VectorNet的性能提高了18%,而每個場景只有50個代理時,僅使用29%的參數(shù),而且僅消耗20%的計算量。
VectorNet使waymo能夠更好地適應(yīng)這些新領(lǐng)域,更有效地學(xué)習(xí),并幫助實(shí)現(xiàn)完全自動駕駛。
發(fā)表評論
請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
圖片新聞
最新活動更多
推薦專題
- 1 從技術(shù)狂歡到安全合規(guī) :2025上半年自動駕駛?cè)谫Y進(jìn)入“場景閉環(huán)”新周期
- 2 智駕技術(shù)戰(zhàn):特斯拉、華為、理想、小鵬和比亞迪,誰才是未來?
- 3 最嚴(yán)輔助駕駛新規(guī),兩部門再劃監(jiān)管、宣傳紅線
- 4 百度蘿卜快跑:從北大嶼山到香港島:自動駕駛在香港的 “三級跳” 啟示錄
- 5 ADS 4推送在即,華為乾崑憑什么率先奪下L3的“橋頭堡”?
- 6 名爵翻身把歌唱?搭載半固態(tài)電池,全新MG4大定39分鐘破萬
- 7 尚界新車16.98萬起!鴻蒙智行“四界”齊發(fā),第二階段拼什么?
- 8 輔助駕駛出海、具身智能落地,稀缺的3D數(shù)據(jù)從哪里來?
- 9 “紅!笔袌鲆廊挥行隆盎印保2025成都車展重磅SUV全面看
- 10 一文看全:中國智能電動部件企業(yè)“圍攻”慕尼黑