詳解車道線檢測(cè)算法之傳統(tǒng)圖像處理
繪制車道線
# 定義左右車道線的點(diǎn)集合right_list = []left_list = []
# 根據(jù)霍夫變換得到的線段,繪制左右各一條車道線if lines is not None: for line in lines: for x1,y1,x2,y2 in line: if (y1 - y2) / (x1 - x2) > 0:# right side right_list.a(chǎn)ppend([x1,y1,x2,y2,(y2-y1)/(x2-x1),(x1*y2-x2*y1)/(x1-x2)]) else:# left side left_list.a(chǎn)ppend([x1,y1,x2,y2,(y2-y1)/(x2-x1),(x1*y2-x2*y1)/(x1-x2)])# 通過(guò)計(jì)算斜率,篩選得到最優(yōu)車道線 if len(right_list) != 0: [k_right_mean,b_right_mean,x_list,y_list] = filter_lines(right_list) y1_right = img.shape[0]-60 x1_right = (y1_right - b_right_mean) / k_right_mean y2_right = img.shape[0]*.65 #min(y_right) x2_right = (y2_right - b_right_mean) / k_right_mean cv2.line(img, (np.int32(x1_right), np.int32(y1_right)), (np.int32(x2_right), np.int32(y2_right)), [255,0,0], thickness) if len(left_list) != 0: [k_left_mean,b_left_mean,x_list,y_list] = filter_lines(left_list) y1_left = img.shape[0]-60 x1_left = (y1_left - b_left_mean) / k_left_mean y2_left = img.shape[0]*.65 #min(y_left) x2_left = (y2_left - b_left_mean) / k_left_mean cv2.line(img, (np.int32(x1_left), np.int32(y1_left)), (np.int32(x2_left), np.int32(y2_left)), color, thickness)
def filter_lines(xy_kb_list): n = 3 k_list = [xy_kb[4] for xy_kb in xy_kb_list] mean = np.mean(k_list) std = np.std(k_list) good_k_list = [] good_b_list = [] good_x_list = [] good_y_list = [] for [x1, y1, x2, y2, k, b] in xy_kb_list: if k < mean + n*std: good_k_list.a(chǎn)ppend(k) good_b_list.a(chǎn)ppend(b) good_x_list.a(chǎn)ppend(x1) good_x_list.a(chǎn)ppend(x2) good_y_list.a(chǎn)ppend(y1) good_y_list.a(chǎn)ppend(y2) if not good_x_list: good_k_list = k_list good_b_list = [xy_kb[5] for xy_kb in xy_kb_list] good_x_list = [xy_kb[0] for xy_kb in xy_kb_list] + [xy_kb[2] for xy_kb in xy_kb_list] good_y_list = [xy_kb[1] for xy_kb in xy_kb_list] + [xy_kb[3] for xy_kb in xy_kb_list] k_mean = np.median(good_k_list) b_mean = np.median(good_b_list) return k_mean,b_mean,good_x_list,good_y_list
將算法應(yīng)用于視頻
output = 'test_video_output.mp4'
from moviepy.editor import VideoFileClip
clip1 = VideoFileClip("test_video.mp4")white_clip = clip1.fl_image(process_image) %time white_clip.write_videofile(output , audio=False)
高級(jí)車道線檢測(cè)算法--曲線
計(jì)算相機(jī)校正矩陣和失真系數(shù)
# 使用提供的一組棋盤格圖片計(jì)算相機(jī)校正矩陣(camera calibration matrix)和失真系數(shù)(distortion coefficients).
objpoints = [] imgpoints = []
for ny in [5,6]: for nx in [6,7,8,9]: objp = np.zeros((ny*nx,3), np.float32) objp[:,:2] = np.mgrid[0:nx, 0:ny].T.reshape(-1,2)
for idx, fname in enumerate(images): img = cv2.imread(fname) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 使用cv2自動(dòng)尋找棋盤corners ret, corners = cv2.findChessboardCorners(gray, (nx,ny), None) if ret == True: objpoints.a(chǎn)ppend(objp) imgpoints.a(chǎn)ppend(corners) # 繪制corners cv2.drawChessboardCorners(img, (nx,ny), corners, ret) image_name=os.path.split(fname)[1] write_name = out_dir_cam+'corners_found_ny'+str(ny)+'_nx'+str(nx)+'_'+image_name cv2.imwrite(write_name, img) print(fname) plt.imshow(img)
# Test undistortion on an imageimg = cv2.imread('camera_cal/calibration.jpg')img_size = (img.shape[1], img.shape[0])
# Do camera calibration given object points and image pointsret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size,None,None)dst = cv2.undistort(img, mtx, dist, None, mtx)
# 保存相機(jī)校正矩陣和失真系數(shù)結(jié)果dist_pickle = {}dist_pickle["mtx"] = mtxdist_pickle["dist"] = distpickle.dump(dist_pickle, open( "camera_dist_pickle.p", "wb" ) )
校正車道線圖片
使用計(jì)算好的相機(jī)校正矩陣(camera calibration matrix)和失真系數(shù)(distortion coefficients)校正車道線圖片。
# 打開相機(jī)校正矩陣和失真系數(shù)結(jié)果with open('camera_dist_pickle.p', mode='rb') as f: dist_pickle = pickle.load(f) mtx = dist_pickle["mtx"] dist = dist_pickle["dist"]
# 應(yīng)用于車道線圖片images = glob.glob('test_images.jpg')
for idx, fname in enumerate(images): img = cv2.imread(fname) dst = cv2.undistort(img, mtx, dist, None, mtx) image_name=os.path.split(fname)[1] write_name = out_dir_img+'undistorted_'+image_name cv2.imwrite(write_name,dst) print(write_name)
組合閾值處理
# 轉(zhuǎn)換到HLS顏色空間(也可嘗試其他顏色空間)hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS).a(chǎn)stype(np.float)l_channel = hls[:,:,1]s_channel = hls[:,:,2]
# 使用Sobel算法在x方向進(jìn)行閾值處理sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0)abs_sobelx = np.a(chǎn)bsolute(sobelx) scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
技術(shù)文庫(kù)
最新活動(dòng)更多
-
免費(fèi)參會(huì)立即報(bào)名>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
-
精彩回顧立即查看>> 【在線研討會(huì)】普源精電--激光原理應(yīng)用與測(cè)試解決方案
-
精彩回顧立即查看>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
精彩回顧立即查看>> 【線上直播】新能源汽車熱管理行業(yè)應(yīng)用新進(jìn)展
-
精彩回顧立即查看>> 【線上直播】西門子電池行業(yè)研討會(huì)-P4B如何加速電池開發(fā)
-
精彩回顧立即查看>> 【線下會(huì)議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
- 1 行業(yè)競(jìng)爭(zhēng)加劇,汽車芯片卷向高算力?
- 2 中國(guó)第一輛無(wú)人駕駛汽車:從實(shí)驗(yàn)室到萬(wàn)里長(zhǎng)江的狂飆三十年
- 3 當(dāng)凱迪拉克只要15萬(wàn)元,為什么還是沒(méi)人買豪華品牌
- 4 重倉(cāng)特斯拉的木頭姐,忽視了一個(gè)重磅玩家
- 5 比亞迪想當(dāng)兩輪電動(dòng)車“賣鏟人”
- 6 自動(dòng)駕駛科普十問(wèn):什么是自動(dòng)駕駛?將給我們帶來(lái)哪些影響?
- 7 百度盯上新“蛋糕”,蘿卜快跑要在歐洲快跑
- 8 智能座艙:一塊屏幕的進(jìn)化史
- 9 無(wú)人快遞配送車的前景:快遞4月破500億件,無(wú)人車如何撕開萬(wàn)億市場(chǎng)的口子?
- 10 固態(tài)激光雷達(dá)會(huì)是組合輔助駕駛的新寵嗎?