學(xué)會(huì)hive中的explain 能為我們?cè)谏a(chǎn)實(shí)踐中帶來(lái)哪些便利?
這兩個(gè)執(zhí)行計(jì)劃樹(shù)里面包含這條sql語(yǔ)句的 operator:
map端第一個(gè)操作肯定是加載表,所以就是 TableScan 表掃描操作,常見(jiàn)的屬性:
alias: 表名稱
Statistics: 表統(tǒng)計(jì)信息,包含表中數(shù)據(jù)條數(shù),數(shù)據(jù)大小等
Select Operator: 選取操作,常見(jiàn)的屬性 :
expressions:需要的字段名稱及字段類型
outputColumnNames:輸出的列名稱
Statistics:表統(tǒng)計(jì)信息,包含表中數(shù)據(jù)條數(shù),數(shù)據(jù)大小等
Group By Operator:分組聚合操作,常見(jiàn)的屬性:
aggregations:顯示聚合函數(shù)信息
mode:聚合模式,值有 hash:隨機(jī)聚合,就是hash partition;partial:局部聚合;final:最終聚合
keys:分組的字段,如果沒(méi)有分組,則沒(méi)有此字段
outputColumnNames:聚合之后輸出列名
Statistics: 表統(tǒng)計(jì)信息,包含分組聚合之后的數(shù)據(jù)條數(shù),數(shù)據(jù)大小等
Reduce Output Operator:輸出到reduce操作,常見(jiàn)屬性:
sort order:值為空 不排序;值為 + 正序排序,值為 - 倒序排序;值為 +- 排序的列為兩列,第一列為正序,第二列為倒序
Filter Operator:過(guò)濾操作,常見(jiàn)的屬性:
predicate:過(guò)濾條件,如sql語(yǔ)句中的where id>=1,則此處顯示(id >= 1)
Map Join Operator:join 操作,常見(jiàn)的屬性:
condition map:join方式 ,如Inner Join 0 to 1 Left Outer Join0 to 2
keys: join 的條件字段
outputColumnNames: join 完成之后輸出的字段
Statistics: join 完成之后生成的數(shù)據(jù)條數(shù),大小等
File Output Operator:文件輸出操作,常見(jiàn)的屬性
compressed:是否壓縮
table:表的信息,包含輸入輸出文件格式化方式,序列化方式等
Fetch Operator 客戶端獲取數(shù)據(jù)操作,常見(jiàn)的屬性:
limit,值為 -1 表示不限制條數(shù),其他值為限制的條數(shù)
好,學(xué)到這里再翻到上面 explain 的查詢結(jié)果,是不是感覺(jué)基本都能看懂了。
實(shí)踐
本節(jié)介紹 explain 能夠?yàn)槲覀冊(cè)谏a(chǎn)實(shí)踐中帶來(lái)哪些便利及解決我們哪些迷惑
1. join 語(yǔ)句會(huì)過(guò)濾 null 的值嗎?
現(xiàn)在,我們?cè)趆ive cli 輸入以下查詢計(jì)劃語(yǔ)句
select a.id,b.user_name from test1 a join test2 b on a.id=b.id;
問(wèn):上面這條 join 語(yǔ)句會(huì)過(guò)濾 id 為 null 的值嗎
執(zhí)行下面語(yǔ)句:
explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id;
我們來(lái)看結(jié)果 (為了適應(yīng)頁(yè)面展示,僅截取了部分輸出信息):
TableScan
alias: a
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: id is not null (type: boolean)
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int)
outputColumnNames: _col0
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
HashTable Sink Operator
keys:
0 _col0 (type: int)
1 _col0 (type: int)
...
從上述結(jié)果可以看到 predicate: id is not null 這樣一行,說(shuō)明 join 時(shí)會(huì)自動(dòng)過(guò)濾掉關(guān)聯(lián)字段為 null值的情況,但 left join 或 full join 是不會(huì)自動(dòng)過(guò)濾的,大家可以自行嘗試下。
2. group by 分組語(yǔ)句會(huì)進(jìn)行排序嗎?
看下面這條sql
select id,max(user_name) from test1 group by id;
問(wèn):group by 分組語(yǔ)句會(huì)進(jìn)行排序嗎
直接來(lái)看 explain 之后結(jié)果 (為了適應(yīng)頁(yè)面展示,僅截取了部分輸出信息)
TableScan
alias: test1
Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), user_name (type: string)
outputColumnNames: id, user_name
Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
Group By Operator
aggregations: max(user_name)
keys: id (type: int)
mode: hash
outputColumnNames: _col0, _col1
Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
Reduce Output Operator
key expressions: _col0 (type: int)
sort order: +
Map-reduce partition columns: _col0 (type: int)
Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
value expressions: _col1 (type: string)
...
我們看 Group By Operator,里面有 keys: id (type: int) 說(shuō)明按照 id 進(jìn)行分組的,再往下看還有 sort order: + ,說(shuō)明是按照 id 字段進(jìn)行正序排序的。
3. 哪條sql執(zhí)行效率高呢?
觀察兩條sql語(yǔ)句
SELECT
a.id,
b.user_name
FROM
test1 a
JOIN test2 b ON a.id = b.id
WHERE
a.id > 2;
SELECT
a.id,
b.user_name
FROM
(SELECT * FROM test1 WHERE id > 2) a
JOIN test2 b ON a.id = b.id;
這兩條sql語(yǔ)句輸出的結(jié)果是一樣的,但是哪條sql執(zhí)行效率高呢
有人說(shuō)第一條sql執(zhí)行效率高,因?yàn)榈诙䲢lsql有子查詢,子查詢會(huì)影響性能
有人說(shuō)第二條sql執(zhí)行效率高,因?yàn)橄冗^(guò)濾之后,在進(jìn)行join時(shí)的條數(shù)減少了,所以執(zhí)行效率就高了
到底哪條sql效率高呢,我們直接在sql語(yǔ)句前面加上 explain,看下執(zhí)行計(jì)劃不就知道了嘛
在第一條sql語(yǔ)句前加上 explain,得到如下結(jié)果
hive (default)> explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id where a.id >2;
OK
Explain
STAGE DEPENDENCIES:
Stage-4 is a root stage
Stage-3 depends on stages: Stage-4
Stage-0 depends on stages: Stage-3
STAGE PLANS:
Stage: Stage-4
Map Reduce Local Work
Alias -> Map Local Tables:
$hdt$_0:a
Fetch Operator
limit: -1
Alias -> Map Local Operator Tree:
$hdt$_0:a
TableScan
alias: a
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int)
outputColumnNames: _col0
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
HashTable Sink Operator
keys:
0 _col0 (type: int)
1 _col0 (type: int)
Stage: Stage-3
Map Reduce
Map Operator Tree:
TableScan
alias: b
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), user_name (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Map Join Operator
condition map:
Inner Join 0 to 1
keys:
0 _col0 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0, _col2
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: int), _col2 (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.a(chǎn)pache.hadoop.mapred.SequenceFileInputFormat
output format: org.a(chǎn)pache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde: org.a(chǎn)pache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Local Work:
Map Reduce Local Work
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
在第二條sql語(yǔ)句前加上 explain,得到如下結(jié)果
hive (default)> explain select a.id,b.user_name from(select * from test1 where id>2 ) a join test2 b on a.id=b.id;
OK
Explain
STAGE DEPENDENCIES:
Stage-4 is a root stage
Stage-3 depends on stages: Stage-4
Stage-0 depends on stages: Stage-3
STAGE PLANS:
Stage: Stage-4
Map Reduce Local Work
Alias -> Map Local Tables:
$hdt$_0:test1
Fetch Operator
limit: -1
Alias -> Map Local Operator Tree:
$hdt$_0:test1
TableScan
alias: test1
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int)
outputColumnNames: _col0
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
HashTable Sink Operator
keys:
0 _col0 (type: int)
1 _col0 (type: int)
Stage: Stage-3
Map Reduce
Map Operator Tree:
TableScan
alias: b
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), user_name (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Map Join Operator
condition map:
Inner Join 0 to 1
keys:
0 _col0 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0, _col2
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: int), _col2 (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.a(chǎn)pache.hadoop.mapred.SequenceFileInputFormat
output format: org.a(chǎn)pache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde: org.a(chǎn)pache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Local Work:
Map Reduce Local Work
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
大家有什么發(fā)現(xiàn),除了表別名不一樣,其他的執(zhí)行計(jì)劃完全一樣,都是先進(jìn)行 where 條件過(guò)濾,在進(jìn)行 join 條件關(guān)聯(lián)。說(shuō)明 hive 底層會(huì)自動(dòng)幫我們進(jìn)行優(yōu)化,所以這兩條sql語(yǔ)句執(zhí)行效率是一樣的。
最后
以上僅列舉了3個(gè)我們生產(chǎn)中既熟悉又有點(diǎn)迷糊的例子,explain 還有很多其他的用途,如查看stage的依賴情況、排查數(shù)據(jù)傾斜、hive 調(diào)優(yōu)等,小伙伴們可以自行嘗試。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車(chē)電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車(chē)】汽車(chē)E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書(shū)】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開(kāi)始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 5 國(guó)產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來(lái)商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽(yáng)光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開(kāi)成長(zhǎng)空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營(yíng)收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?