劍橋大學采用AI技術(shù)改善電池健康和安全性
預測鋰離子電池的健康狀況和剩余使用壽命是限制電動汽車廣泛使用的一大難題。隨著時間的推移,電池性能會通過一系列復雜的精細化學過程而下降。單獨來看,這些過程對電池性能沒有太大的影響,但合在一起,它們會嚴重縮短電池的性能和壽命。
來自劍橋大學和紐卡斯爾大學的研究人員設計了一種新的方法,通過向電池發(fā)送電脈沖并測量其響應來監(jiān)測電池。然后,他們利用機器學習算法對測量數(shù)據(jù)進行處理,以預測電池的健康狀況和使用壽命。
“安全性和可靠性是最重要的設計標準,因為我們開發(fā)的電池可以在一個小空間里儲存大量能量,”劍橋大學卡文迪什實驗室的阿爾法·李博士(Dr. Alpha Lee)說,”通過改進監(jiān)測充放電的軟件,并使用數(shù)據(jù)驅(qū)動軟件來控制充電過程,我相信我們可以大大改善電池性能!
研究人員設計了一種通過向電池發(fā)送電脈沖并測量其反應來監(jiān)測電池的方法。然后使用一個機器學習模型來識別電反應的具體特征,這些特征是電池老化的信號。研究人員進行了超過20,000次的實驗測量來訓練模型。重要的是,該模型學會了如何從無關(guān)的噪聲中區(qū)分重要的信號。他們的方法是無創(chuàng)的,是一個簡單的附加系統(tǒng)。
研究人員還發(fā)現(xiàn),機器學習模型可以為退化的物理機制提供線索。該模型可以告知哪些電信號與老化最相關(guān),進而允許他們設計特定的實驗來探究電池退化的原因和方式。
“機器學習是對物理理解的補充和增強,”第一作者之一、同樣來自卡文迪什實驗室的張云蔚博士(Dr. Yunwei Zhang)說!拔覀兊臋C器學習模型識別出的可解釋信號是未來理論和實驗研究的起點!
該研究結(jié)果發(fā)表在《自然通訊》雜志上。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
推薦專題
- 1 AI 眼鏡讓百萬 APP「集體失業(yè)」?
- 2 大廠紛紛入局,百度、阿里、字節(jié)搶奪Agent話語權(quán)
- 3 深度報告|中國AI產(chǎn)業(yè)正在崛起成全球力量,市場潛力和關(guān)鍵挑戰(zhàn)有哪些?
- 4 上海跑出80億超級獨角獸:獲上市公司戰(zhàn)投,干人形機器人
- 5 一文看懂視覺語言動作模型(VLA)及其應用
- 6 國家數(shù)據(jù)局局長劉烈宏調(diào)研格創(chuàng)東智
- 7 下一代入口之戰(zhàn):大廠為何紛紛押注智能體?
- 8 百億AI芯片訂單,瘋狂傾銷中東?
- 9 Robotaxi新消息密集釋放,量產(chǎn)元年誰在領(lǐng)跑?
- 10 格斗大賽出圈!人形機器人致命短板曝光:頭腦過于簡單