人工智能:MIT提出不降速的云AI
據(jù)外媒報道,美國MIT(麻省理工學(xué)院)提出一種可以保護基于云的AI系統(tǒng),可以在不降低速度的情況下保護云計算的AI人工智能。這種基于云的AI人工智能系統(tǒng)的安全性非常重要,特別是當人們使用像照片或醫(yī)療記錄這樣的敏感數(shù)據(jù)時。
迄今為止,使用傳統(tǒng)方法,使得加密數(shù)據(jù)可以使機器學(xué)習(xí)系統(tǒng)如此緩慢,以致于幾乎無法使用。
然而,值得慶幸的是,美國MIT提出一種GAZELLE形式的解決方案,這項技術(shù)使用加密卷積神經(jīng)網(wǎng)絡(luò)且不會出現(xiàn)急劇減速。更關(guān)鍵的是將兩種現(xiàn)有技術(shù)融為一體,避免了這些方法產(chǎn)生的常見瓶頸。
首先,用戶依靠“亂碼電路”方法將數(shù)據(jù)上傳到AI,該方法采用輸入并向會話的每一方發(fā)送兩個不同的輸入,為用戶和神經(jīng)網(wǎng)絡(luò)隱藏數(shù)據(jù),同時使相關(guān)輸出可訪問。然而,如果該方法被用于整個系統(tǒng),則通常過于密集,因此MIT在發(fā)送給用戶之前,使用更高要求的計算層的同態(tài)加密(它既取又產(chǎn)加密數(shù)據(jù))。同態(tài)方法須引入噪聲才能工作,因此它只限于在傳輸信息之前一次壓縮一層。簡而言之:MIT正在根據(jù)每一方做得最好的方式分擔工作量。
測試結(jié)果表明,其方法性能比傳統(tǒng)方法快了30倍,MIT承諾按照他們的要求將所需的網(wǎng)絡(luò)帶寬縮減一個數(shù)量級。傳統(tǒng)方法迫使公司和機構(gòu)要么建立昂貴的本地神經(jīng)網(wǎng)絡(luò),要么完全忽略基于AI人工智能的系統(tǒng)。而MIT提出的云AI方法將會導(dǎo)致更多使用基于互聯(lián)網(wǎng)的神經(jīng)網(wǎng)絡(luò)來處理重要信息。例如,醫(yī)院可以讓AI發(fā)現(xiàn)MRI掃描中的醫(yī)學(xué)問題,并與其他醫(yī)院專家或醫(yī)生共享,而不暴露患者數(shù)據(jù)和隱私。敏感數(shù)據(jù)即保持安全性,又保持時效性。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
推薦專題
- 1 先進算力新選擇 | 2025華為算力場景發(fā)布會暨北京xPN伙伴大會成功舉辦
- 2 人形機器人,正狂奔在批量交付的曠野
- 3 宇樹機器人撞人事件的深度剖析:六維力傳感器如何成為人機安全的關(guān)鍵屏障
- 4 解碼特斯拉新AI芯片戰(zhàn)略 :從Dojo到AI5和AI6推理引擎
- 5 AI版“四萬億刺激”計劃來了
- 6 2025年8月人工智能投融資觀察
- 7 特斯拉三代靈巧手:演進歷程與核心供應(yīng)鏈梳理
- 8 a16z最新AI百強榜:硅谷頂級VC帶你讀懂全球生成式AI賽道最新趨勢
- 9 Manus跑路,大廠掉線,只能靠DeepSeek了
- 10 地平線的野心:1000萬套HSD上車