人工智能AI在機(jī)器人運(yùn)動控制領(lǐng)域應(yīng)用盤點(diǎn)
1)強(qiáng)化學(xué)習(xí)
強(qiáng)化學(xué)習(xí)框架中,有一個包含神經(jīng)網(wǎng)絡(luò)的Agent負(fù)責(zé)決策。Agent以當(dāng)前機(jī)器人傳感器所采集到的環(huán)境為輸入,輸出控制機(jī)器人的行動命令action,機(jī)器人行動后,再觀察新的環(huán)境狀態(tài)和行動帶來的結(jié)果Reward,決定下一步新的行動action。Reward根據(jù)控制目標(biāo)進(jìn)行設(shè)置,并有正反向之分。例如,如果以自動駕駛為目標(biāo),正向的Reward的就是到達(dá)目的地,反向就是不能達(dá)到目的地,更不好的Reward就是出車禍。然后重復(fù)這個過程,目標(biāo)是最大化Reward。
強(qiáng)化學(xué)習(xí)的控制過程,本來就是個正向反饋的控制過程,是AI用于機(jī)器人控制的基礎(chǔ)。以此為基礎(chǔ),強(qiáng)化學(xué)習(xí)在機(jī)器人控制方面出現(xiàn)了一些研究成果。
2)環(huán)境中尋找目標(biāo)
16年,李飛飛組放出了一篇論文,基于深度強(qiáng)化學(xué)習(xí),在以目標(biāo)圖像為輸入的情況下,不建圖去找東西。大致思路是:根據(jù)機(jī)器看到的圖,決定怎么走,然后再看圖,再決定新走的一步,直到找到東西。論文將目標(biāo)圖像作為輸入,訓(xùn)練出來的神經(jīng)網(wǎng)絡(luò)具有通用性。
這種方式找東西更接近人的思維。訓(xùn)練出的控制器并沒有記住物體的位置,更不知道房屋的結(jié)構(gòu)。但它記住了在每一個位置,通向各個物體應(yīng)該怎么走。
3)機(jī)器人抓取
傳統(tǒng)的機(jī)器人學(xué)研究認(rèn)為,需要非常清楚要抓取的物體的三維幾何形狀,分析受力位置和力的大小,再反向計(jì)算機(jī)器手如何一步步移動到這些位置。但這種方式抓取不規(guī)則形狀和柔性物體會很困難。例如毛巾,可能需要看成一系列剛體的鏈接,再進(jìn)行動力學(xué)建模分析,但是計(jì)算量比較大。而小黃鴨那樣的橡膠,外部并不能看出彈性程度,難以計(jì)算出需要施加的正確的力。
Pieter Abbeel、DeepMind和OpenAI關(guān)于機(jī)器人控制的研究,都以此深度強(qiáng)化學(xué)習(xí)為基礎(chǔ);趶(qiáng)化學(xué)習(xí)進(jìn)行機(jī)器人抓取,以機(jī)器視角看到的圖像為輸入,以機(jī)器最終抓到物體為目標(biāo),不斷對機(jī)器進(jìn)行訓(xùn)練,從而在不建模和不做受力分析的情況下,實(shí)現(xiàn)對物體的抓取。Pieter Abbeel已經(jīng)展示過機(jī)器人疊毛巾,開瓶蓋,裝玩具等復(fù)雜的動作。
不過基于強(qiáng)化學(xué)習(xí)也仍有很多問題,如效率低、推理過程長、任務(wù)難以描述、不能終身學(xué)習(xí)、不能最大限度從真實(shí)世界獲取信息等。其中一些通過meta學(xué)習(xí),one-shot學(xué)習(xí),遷移學(xué)習(xí),VR示教等方法的引入得到了改善,有些則還暫時(shí)難以解決。
4.Dexterity Network
鑒于深度強(qiáng)化學(xué)習(xí)的各種問題,Pieter Abbeel在UCBerkeley的同事Ken Goldberg,則采用了叫做Dexterity Network(Dex-Net)的研究思路。首先通過傳統(tǒng)機(jī)器人學(xué)中分析受力和建模的思路,建立一個包含大量數(shù)據(jù)的數(shù)據(jù)集,這個數(shù)據(jù)集里的每一項(xiàng)數(shù)據(jù)包含一個物體的模型和這個物體在不同姿態(tài)下可以被穩(wěn)定抓起來的施力方式,這些施力方式是通過物體模型計(jì)算出來的。有了數(shù)據(jù)之后,用這些數(shù)據(jù)訓(xùn)練一個神經(jīng)網(wǎng)絡(luò)。然后給出一個新物體,通過神經(jīng)網(wǎng)絡(luò)判斷這個物體和數(shù)據(jù)集里哪個物體最相似,然后根據(jù)最相似的物體的數(shù)據(jù)集里包含的施力方式計(jì)算出這個新物體的最穩(wěn)定施力方式。
Ken Goldberg的方案的一個重要弊端,是計(jì)算量過于龐大。整個算法占用了Google云服務(wù)器上的1500臺虛擬機(jī)的計(jì)算量。此方法也讓“云機(jī)器人”這個概念受到了關(guān)注。
目前Pieter Abbeel和Ken Goldberg的兩種方法還處于學(xué)術(shù)爭議階段,新的研究成果還在不斷出現(xiàn),也還有很多問題沒有解決,尤其是穩(wěn)定性和魯棒性是各方爭議的焦點(diǎn)。不同于語音識別音箱出了錯,無非是鬧個笑話,機(jī)器人系統(tǒng)對穩(wěn)定性和可靠性的要求非常高,系統(tǒng)一旦出錯,輕則毀物,重則造成人類的生命危險(xiǎn)。Pieter Abbeel也承認(rèn)目前還沒考慮魯棒性和穩(wěn)定性問題,似乎整體還沒達(dá)到商用產(chǎn)品級。
總結(jié)
總體而言,以強(qiáng)化學(xué)習(xí)為代表,AI在機(jī)器人控制領(lǐng)域近兩年取得了一些進(jìn)展,尤其是在過去研究方法難以突破的環(huán)境交互問題方面取得了進(jìn)展。但基于神經(jīng)網(wǎng)絡(luò)的控制系統(tǒng),在魯棒性等方面短期似乎難以得到解決,因此離實(shí)際應(yīng)用還有很遠(yuǎn)的距離。在多種研究方法的共同努力下,我們也期待機(jī)器人控制問題能夠早日有所突破。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
6月20日立即下載>> 【白皮書】精準(zhǔn)測量 安全高效——福祿克光伏行業(yè)解決方案
-
7月3日立即報(bào)名>> 【在線會議】英飛凌新一代智能照明方案賦能綠色建筑與工業(yè)互聯(lián)
-
7月22-29日立即報(bào)名>> 【線下論壇】第三屆安富利汽車生態(tài)圈峰會
-
7.30-8.1火熱報(bào)名中>> 全數(shù)會2025(第六屆)機(jī)器人及智能工廠展
-
7月31日免費(fèi)預(yù)約>> OFweek 2025具身機(jī)器人動力電池技術(shù)應(yīng)用大會
-
免費(fèi)參會立即報(bào)名>> 7月30日- 8月1日 2025全數(shù)會工業(yè)芯片與傳感儀表展
推薦專題
- 1 AI 眼鏡讓百萬 APP「集體失業(yè)」?
- 2 大廠紛紛入局,百度、阿里、字節(jié)搶奪Agent話語權(quán)
- 3 深度報(bào)告|中國AI產(chǎn)業(yè)正在崛起成全球力量,市場潛力和關(guān)鍵挑戰(zhàn)有哪些?
- 4 上海跑出80億超級獨(dú)角獸:獲上市公司戰(zhàn)投,干人形機(jī)器人
- 5 國家數(shù)據(jù)局局長劉烈宏調(diào)研格創(chuàng)東智
- 6 一文看懂視覺語言動作模型(VLA)及其應(yīng)用
- 7 下一代入口之戰(zhàn):大廠為何紛紛押注智能體?
- 8 百億AI芯片訂單,瘋狂傾銷中東?
- 9 Robotaxi新消息密集釋放,量產(chǎn)元年誰在領(lǐng)跑?
- 10 格斗大賽出圈!人形機(jī)器人致命短板曝光:頭腦過于簡單