被低估了的單目視覺(jué)識(shí)別
對(duì)單目來(lái)說(shuō)物體越遠(yuǎn),測(cè)距的精度越低,硬件上的缺點(diǎn)可以通過(guò)算法去彌補(bǔ),近日有兩篇關(guān)于單目視覺(jué)的研究論文曝光,一篇是單目視頻的深度估計(jì),另一篇?jiǎng)t是單目3d物體識(shí)別,在數(shù)據(jù)集下測(cè)試都取得了不錯(cuò)的效果,我們熟悉的單目攝像頭可能一直被低估了。
攝像頭是自動(dòng)駕駛汽車(chē)中重要的傳感器之一,在自動(dòng)駕駛過(guò)程中的首要任務(wù)就是道路識(shí)別,主要是圖像特征法和模型匹配法來(lái)進(jìn)行識(shí)別。行駛過(guò)程中需要進(jìn)行障礙物檢測(cè)和路標(biāo)路牌識(shí)別等,此時(shí)車(chē)輛上的信息采集便可以運(yùn)用單目視覺(jué)或者多目視覺(jué)。
由于很多圖像算法的研究都是基于單目攝像機(jī)開(kāi)發(fā)的,因此相對(duì)于其他類(lèi)別的攝像機(jī),單目攝像機(jī)的算法成熟度更高;趩文繑z像頭可以用來(lái)定位、目標(biāo)識(shí)別等。但是相比多目,單目有著先天的缺陷,視野信息不能夠豐富,單目測(cè)距的精度也較低。
不過(guò)單目攝像頭的作用還未發(fā)揮到極致,近日有兩篇關(guān)于單目視覺(jué)的研究,讓眾多研究者驚艷,原來(lái)單目一樣可以有不錯(cuò)的表現(xiàn)。
Paper1:Orthographic Feature Transform for Monocular 3D Object Detection
單目3d物體檢測(cè)是一件很有挑戰(zhàn)性的事情,目前最先進(jìn)系統(tǒng)的成績(jī)也不及用激光雷達(dá)的1/10,劍橋大學(xué)的科學(xué)家利用單目視覺(jué)進(jìn)行3d物體識(shí)別,通過(guò)引入正交特征變換,使基于圖像的特征映射到正交3D空間,來(lái)避免形成圖像域,可以全面地推斷出各個(gè)物體比例尺寸以及相隔的距離。通過(guò)在KITTI數(shù)據(jù)集里測(cè)試,發(fā)現(xiàn)與前人的Mono3D方法對(duì)比,這種方法在鳥(niǎo)瞰圖平均精確度、3D物體邊界識(shí)別上各項(xiàng)測(cè)試成績(jī)上均優(yōu)于對(duì)手。
尤其在探測(cè)遠(yuǎn)處物體時(shí)要遠(yuǎn)超Mono3D,遠(yuǎn)處可識(shí)別出的汽車(chē)數(shù)量更多。甚至在嚴(yán)重遮擋、截?cái)嗟那闆r下仍能正確識(shí)別出物體。在某些場(chǎng)景下甚至達(dá)到了3DOP系統(tǒng)的水平。
在這項(xiàng)工作中,提出的一種新穎的單目三維物體檢測(cè)方法,基于在鳥(niǎo)瞰視野范圍內(nèi)操作的,減輕了許多不良圖像的屬性,更易于推斷出世界的3D結(jié)構(gòu)。用一種簡(jiǎn)單的正交特征變換,將基于圖像的特征轉(zhuǎn)換為這種鳥(niǎo)瞰視圖表示,并描述了如何使用圖像積分有效地實(shí)現(xiàn)它,以深二維卷積網(wǎng)絡(luò)的形式應(yīng)用于提取的鳥(niǎo)瞰特征,取得了不錯(cuò)的效果,說(shuō)明單目還有很大可開(kāi)發(fā)的空間。
Paper2:A Structured Approach to Unsupervised Depth Learning from Monocular Videos
這是谷歌的工程師做的一個(gè)研究,他利用單目視頻深度估計(jì),自從2014年NIPS上出現(xiàn)第一篇用CNN-based來(lái)做單目深度估計(jì),近幾年也不斷涌現(xiàn)出一些做單目深度估計(jì)的文章,有直接依靠深度學(xué)習(xí)和網(wǎng)絡(luò)架構(gòu)得到結(jié)果,還有依靠于深度信息本身的性質(zhì)進(jìn)行估計(jì),基于CRF和基于相對(duì)深度方法的,本篇文章是基于無(wú)監(jiān)督學(xué)習(xí)單目視頻深度估計(jì)。文中的方法能夠模擬運(yùn)動(dòng)物體并產(chǎn)生高質(zhì)量的深度估計(jì)結(jié)果,與以前的單目視頻無(wú)監(jiān)督學(xué)習(xí)方法相比,該方法能夠恢復(fù)移動(dòng)物體的正確深度。也就說(shuō),能夠正確地恢復(fù)與自身運(yùn)動(dòng)車(chē)輛相同速度的移動(dòng)汽車(chē)的深度。因?yàn)橐慌_(tái)相對(duì)靜止的車(chē)輛,往往會(huì)表現(xiàn)出與地面相同的無(wú)線(xiàn)深度特征,解決了高動(dòng)態(tài)場(chǎng)景中的問(wèn)題。
這些方法仍需要很長(zhǎng)時(shí)間去測(cè)試其可靠性,相比激光雷達(dá),單目算法一旦能在無(wú)人駕駛汽車(chē)上成功應(yīng)用,將會(huì)節(jié)省一大筆費(fèi)用,單目視覺(jué)識(shí)別可能還有著無(wú)限的市場(chǎng)潛力。
發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
技術(shù)文庫(kù)
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車(chē)電子技術(shù)在線(xiàn)大會(huì)
-
免費(fèi)參會(huì)立即報(bào)名>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
-
精彩回顧立即查看>> 【線(xiàn)上直播】新能源汽車(chē)熱管理行業(yè)應(yīng)用新進(jìn)展
-
精彩回顧立即查看>> 【線(xiàn)上直播】西門(mén)子電池行業(yè)研討會(huì)-P4B如何加速電池開(kāi)發(fā)
-
精彩回顧立即查看>> 【線(xiàn)下會(huì)議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
精彩回顧立即查看>> 【線(xiàn)下論壇】華邦電子與萊迪思聯(lián)合技術(shù)論壇
推薦專(zhuān)題
- 1 2025上海車(chē)展看什么?看這一篇就夠了!
- 2 關(guān)稅大戰(zhàn),汽車(chē)芯片會(huì)漲價(jià)嗎
- 3 工信部召開(kāi)智能網(wǎng)聯(lián)汽車(chē)產(chǎn)品準(zhǔn)入及軟件在線(xiàn)升級(jí)管理工作推進(jìn)會(huì)提的內(nèi)容,將如何影響智駕行業(yè)發(fā)展?
- 4 地平線(xiàn)智駕方案軟硬結(jié)合,大眾、保時(shí)捷的合作紛至沓來(lái)
- 5 高呼的“全民智駕”真的做到“全民”了嗎?
- 6 一季度汽車(chē)產(chǎn)量省份排名大洗牌!誰(shuí)在異軍突起?
- 7 奇瑞的混動(dòng)技術(shù):厚積薄發(fā),從發(fā)動(dòng)機(jī)到混動(dòng)系統(tǒng)
- 8 東風(fēng)+華為,還是華為借東風(fēng)?華為ADS3.0技術(shù)詳解
- 9 工信部對(duì)浮躁的智駕說(shuō)“不”
- 10 重要信號(hào)!奇瑞汽車(chē)IPO背后大佬現(xiàn)身海信集團(tuán)