Python數(shù)據(jù)科學(xué):決策樹(shù)
通過(guò)安裝graphviz和相應(yīng)的插件,便能實(shí)現(xiàn)決策樹(shù)的可視化輸出,具體安裝過(guò)程不細(xì)說(shuō)。
# 設(shè)置graphviz路徑
os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'
# 決策樹(shù)的可視化
dot_data = tree.export_graphviz(clf, out_file=None, feature_names=data.columns, class_names=['0', '1'], filled=True)
graph = pydotplus.graph_from_dot_data(dot_data)
Image(graph.create_png())
# 將決策樹(shù)模型輸出為圖片
graph.write_png(r'pang.png')
# 將決策樹(shù)模型輸出為PDF
graph.write_pdf('tree.pdf')
可視化結(jié)果如下。
可以看見(jiàn)決策樹(shù)根節(jié)點(diǎn)以fico_score <= 683.5為分割標(biāo)準(zhǔn)。
全體樣本的基尼系數(shù)為0.483,在3284個(gè)樣本中,被預(yù)測(cè)變量為0的有2671個(gè),為1的有1839個(gè)。
使用scikit-learn提供的參數(shù)搜索進(jìn)行調(diào)優(yōu)(GridSearchCV)。
# 設(shè)置樹(shù)的最大深度
max_depth = [None, ]
# 設(shè)置樹(shù)的最大葉節(jié)點(diǎn)數(shù)
max_leaf_nodes = np.a(chǎn)range(5, 10, 1)
# 設(shè)置樹(shù)的類標(biāo)簽權(quán)重
class_weight = [{0: 1, 1: 2}, {0: 1, 1: 3}]
# 設(shè)置參數(shù)網(wǎng)格param_grid = {'max_depth': max_depth,
'max_leaf_nodes': max_leaf_nodes,
'class_weight': class_weight}
# 對(duì)參數(shù)組合進(jìn)行建模和效果驗(yàn)證
clf_cv = GridSearchCV(estimator=clf,
param_grid=param_grid,
cv=5,
scoring='roc_auc')
# 輸出網(wǎng)格搜索的決策樹(shù)模型信息
print(clf_cv.fit(train_data, train_target))
輸出網(wǎng)格搜索的決策樹(shù)模型信息。
使用得到的“最優(yōu)”模型對(duì)測(cè)試集進(jìn)行評(píng)估。
# 輸出優(yōu)化后的決策樹(shù)模型的決策類評(píng)估指標(biāo)
print(metrics.classification_report(test_target, clf_cv.predict(test_data)))
# 輸出優(yōu)化后的決策樹(shù)模型的參數(shù)組合
print(clf_cv.best_params_)
輸出結(jié)果。
計(jì)算模型在不同閾值下的靈敏度和特異度指標(biāo),繪制ROC曲線。
# 使用模型進(jìn)行預(yù)測(cè)
train_est = clf_cv.predict(train_data)
train_est_p = clf_cv.predict_proba(train_data)[:, 1]
test_est = clf_cv.predict(test_data)
test_est_p = clf_cv.predict_proba(test_data)[:, 1]
# 繪制ROC曲線
fpr_test, tpr_test, th_test = metrics.roc_curve(test_target, test_est_p)
fpr_train, tpr_train, th_train = metrics.roc_curve(train_target, train_est_p)
plt.figure(figsize=[3, 3])
plt.plot(fpr_test, tpr_test, 'b--')
plt.plot(fpr_train, tpr_train, 'r-')
plt.title('ROC curve')
plt.show()
# 計(jì)算AUC值
print(metrics.roc_auc_score(test_target, test_est_p))
ROC曲線圖如下,其中訓(xùn)練集的ROC曲線(實(shí)線)與測(cè)試集的ROC曲線(虛線)很接近,說(shuō)明模型沒(méi)有過(guò)擬合。
模型的ROC曲線下面積為0.7358,模型效果一般。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
6月20日立即下載>> 【白皮書(shū)】精準(zhǔn)測(cè)量 安全高效——福祿克光伏行業(yè)解決方案
-
7月3日立即報(bào)名>> 【在線會(huì)議】英飛凌新一代智能照明方案賦能綠色建筑與工業(yè)互聯(lián)
-
7月22-29日立即報(bào)名>> 【線下論壇】第三屆安富利汽車生態(tài)圈峰會(huì)
-
7.30-8.1火熱報(bào)名中>> 全數(shù)會(huì)2025(第六屆)機(jī)器人及智能工廠展
-
7月31日免費(fèi)預(yù)約>> OFweek 2025具身機(jī)器人動(dòng)力電池技術(shù)應(yīng)用大會(huì)
-
免費(fèi)參會(huì)立即報(bào)名>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
推薦專題
- 1 AI 眼鏡讓百萬(wàn) APP「集體失業(yè)」?
- 2 大廠紛紛入局,百度、阿里、字節(jié)搶奪Agent話語(yǔ)權(quán)
- 3 深度報(bào)告|中國(guó)AI產(chǎn)業(yè)正在崛起成全球力量,市場(chǎng)潛力和關(guān)鍵挑戰(zhàn)有哪些?
- 4 上海跑出80億超級(jí)獨(dú)角獸:獲上市公司戰(zhàn)投,干人形機(jī)器人
- 5 一文看懂視覺(jué)語(yǔ)言動(dòng)作模型(VLA)及其應(yīng)用
- 6 國(guó)家數(shù)據(jù)局局長(zhǎng)劉烈宏調(diào)研格創(chuàng)東智
- 7 下一代入口之戰(zhàn):大廠為何紛紛押注智能體?
- 8 百億AI芯片訂單,瘋狂傾銷中東?
- 9 Robotaxi新消息密集釋放,量產(chǎn)元年誰(shuí)在領(lǐng)跑?
- 10 格斗大賽出圈!人形機(jī)器人致命短板曝光:頭腦過(guò)于簡(jiǎn)單