使用 Python 的鉛筆素描圖像
圖片在 Python 中表示為一組數(shù)字。所以我們可以進行各種矩陣操作來得到令人興奮的結(jié)果。在本教程中,將向你展示如何只用幾行代碼創(chuàng)建“鉛筆”草圖圖像。
這個過程非常簡單:
1. 灰度圖像
2. 反轉(zhuǎn)顏色
3. 模糊倒置圖像
4. 將減淡混合應用于模糊和灰度圖像
我們可以為此選擇任何我們想要的圖像。將演示如何創(chuàng)建可以應用于任何圖像、視頻或?qū)崟r流的對象。
導入庫
OpenCV 和 Numpy 是項目所需的唯一庫。我們使用以下兩行代碼導入它們:
import cv2
import numpy as np
讀取照片
這是使用 OpenCV 讀取存儲在磁盤上的圖像的命令之一:
frame = cv2.imread("porche.png")
此命令讀取位于當前文件夾中的文件“image.png”,并作為幀存儲在內(nèi)存中。但正如我所提到的,這可以是幀序列或通過其他方法加載的圖像。
使用 OpenCV 顯示圖像
下一個重要步驟是在屏幕上顯示圖像:
cv2.imshow('image', frame)
cv2.waitKey(0)
cv2.destroyAllWindows()
圖像將在一個標題為“image”的新窗口中打開:
灰度圖像
首先,我們需要對圖像進行灰度處理(將其轉(zhuǎn)換為黑白)。我們可以使用 cv2 庫或 numpy.
numpy 沒有任何用于灰度的內(nèi)置函數(shù),但我們也可以很容易地將我們的圖像轉(zhuǎn)換為灰度,公式如下所示:
grayscale = np.a(chǎn)rray(np.dot(frame[..., :3], [0.299, 0.587, 0.114]), dtype=np.uint8)
grayscale = np.stack((grayscale,) * 3, axis=-1)
在這里,我們將 RGB 圖像通道與適當?shù)闹迪喑瞬⑺鼈冞B接到單個通道。
因此,我們需要返回到 3 層圖像,使用 numpy stack 函數(shù)來實現(xiàn)。這是我們得到的灰度圖像:
反轉(zhuǎn)圖像
現(xiàn)在我們需要反轉(zhuǎn)圖像,白色應該變成黑色。
它簡單地從每個圖像像素中減去 255 。因為,默認情況下,圖像是 8 位的,最多有 256 個色調(diào):
inverted_img = 255 - grayscale
當我們顯示反轉(zhuǎn)圖像或?qū)⑵浔4嬖诠獗P上時,我們會得到以下圖片:
模糊圖像
現(xiàn)在我們需要模糊倒置的圖像。通過對倒置圖像應用高斯濾波器來執(zhí)行模糊。這里最重要的是高斯函數(shù)或 sigma 的方差。隨著 sigma 的增加,圖像變得更模糊。Sigma 控制色散量,從而控制模糊程度?梢酝ㄟ^反復試驗選擇合適的 sigma 值:
blur_img = cv2.GaussianBlur(inverted_img, ksize=(0, 0), sigmaX=5
模糊圖像的結(jié)果如下所示:
減淡和融合
顏色減淡和融合模式并通過降低對比度來加亮基色以反映混合色。
def dodge(self, front: np.ndarray, back: np.ndarray) -> np.ndarray:
"""The formula comes from https://en.wikipedia.org/wiki/Blend_modes
Args:
front: (np.ndarray) - front image to be applied to dodge algorithm
back: (np.ndarray) - back image to be applied to dodge algorithm
Returns:
image: (np.ndarray) - dodged image
"""
result = back*255.0 / (255.0-front)
result[result>255] = 255
result[back==255] = 255
return result.a(chǎn)stype('uint8')
final_img = self.dodge(blur_img, grayscale)
就是這樣!結(jié)果如下:
完整代碼:
class PencilSketch:
"""Apply pencil sketch effect to an image
"""
def __init__(
self,
blur_simga: int = 5,
ksize: typing.Tuple[int, int] = (0, 0),
sharpen_value: int = None,
kernel: np.ndarray = None,
) -> None:
"""
Args:
blur_simga: (int) - sigma ratio to apply for cv2.GaussianBlur
ksize: (float) - ratio to apply for cv2.GaussianBlur
sharpen_value: (int) - sharpen value to apply in predefined kernel array
kernel: (np.ndarray) - custom kernel to apply in sharpen function
"""
self.blur_simga = blur_simga
self.ksize = ksize
self.sharpen_value = sharpen_value
self.kernel = np.a(chǎn)rray([[0, -1, 0], [-1, sharpen_value,-1], [0, -1, 0]]) if kernel == None else kernel
def dodge(self, front: np.ndarray, back: np.ndarray) -> np.ndarray:
"""The formula comes from https://en.wikipedia.org/wiki/Blend_modes
Args:
front: (np.ndarray) - front image to be applied to dodge algorithm
back: (np.ndarray) - back image to be applied to dodge algorithm
Returns:
image: (np.ndarray) - dodged image
"""
result = back*255.0 / (255.0-front)
result[result>255] = 255
result[back==255] = 255
return result.a(chǎn)stype('uint8')
def sharpen(self, image: np.ndarray) -> np.ndarray:
"""Sharpen image by defined kernel size
Args:
image: (np.ndarray) - image to be sharpened
Returns:
image: (np.ndarray) - sharpened image
"""
if self.sharpen_value is not None and isinstance(self.sharpen_value, int):
inverted = 255 - image
return 255 - cv2.filter2D(src=inverted, ddepth=-1, kernel=self.kernel)
return image
def __call__(self, frame: np.ndarray) -> np.ndarray:
"""Main function to do pencil sketch
Args:
frame: (np.ndarray) - frame to excecute pencil sketch on
Returns:
frame: (np.ndarray) - processed frame that is pencil sketch type
"""
grayscale = np.a(chǎn)rray(np.dot(frame[..., :3], [0.299, 0.587, 0.114]), dtype=np.uint8)
grayscale = np.stack((grayscale,) * 3, axis=-1) # convert 1 channel grayscale image to 3 channels grayscale
inverted_img = 255 - grayscale
blur_img = cv2.GaussianBlur(inverted_img, ksize=self.ksize, sigmaX=self.blur_simga)
final_img = self.dodge(blur_img, grayscale)
sharpened_image = self.sharpen(final_img)
return sharpened_image
可以猜測,除了模糊期間的blur_sigma參數(shù)外,我們沒有太多的空間可以使用。添加了一個額外的功能來銳化圖像以解決這個問題。
它與模糊過程非常相似,只是現(xiàn)在,我們不是創(chuàng)建一個核來平均每個像素的強度,而是創(chuàng)建一個內(nèi)核,使像素強度更高,因此更容易被人眼看到。
下面是關于如何將 PencilSketch 對象用于我們的圖像的基本代碼:
# main.py
from pencilSketch import PencilSketch
from engine import Engine
if __name__ == '__main__':
pencilSketch = PencilSketch(blur_simga=5)
selfieSegmentation = Engine(image_path='data/porche.jpg', show=True, custom_objects=[pencilSketch])
selfieSegmentation.run()
結(jié)論:
這是一個非常不錯的教程,不需要任何深入的 Python 知識就可以從任何圖像中實現(xiàn)這種“鉛筆”素描風格。
原文標題 : 使用 Python 的鉛筆素描圖像

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀”爆發(fā)至今,五類新物種登上歷史舞臺
- 5 國產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計算迎來商業(yè)化突破,但落地仍需時間
- 7 東陽光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長空間
- 8 地平線自動駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營收大增主靠小件,虧損繼續(xù)又逢關稅,能否乘機器人東風翻身?