數(shù)據(jù)格式轉(zhuǎn)化,PyTorch就是救星!
介紹
Pytorch是一個(gè)深度學(xué)習(xí)框架,廣泛用于圖像分類、分割、目標(biāo)識(shí)別等各種任務(wù)。在這種情況下,我們必須處理各種類型的數(shù)據(jù)。很可能在大多數(shù)情況下,數(shù)據(jù)可能不是我們所需要的格式。PyTorch轉(zhuǎn)換就是救星。
torchvision.transforms模塊提供了可以使用的各種圖像轉(zhuǎn)換。我們使用變換對(duì)數(shù)據(jù)進(jìn)行一些操作,使其適合于訓(xùn)練torchvision模塊,PyTorch為常見(jiàn)的圖像變換提供變換有關(guān)的函數(shù)。這些變換可以使用Compose鏈接在一起。
讓我們?cè)诒疚闹锌纯雌渲械膸讉(gè)!準(zhǔn)備好了嗎?
1. ToTensor
這是一個(gè)非常常用的轉(zhuǎn)換。在PyTorch中,我們主要處理張量形式的數(shù)據(jù)。如果輸入數(shù)據(jù)是NumPy數(shù)組或PIL圖像的形式,我們可以使用ToTensor將其轉(zhuǎn)換為張量格式。
最后一個(gè)張量的形式是(C * H * W)。同時(shí),還執(zhí)行從0–255到0–1的范圍內(nèi)的縮放操作。
讓我們用一個(gè)例子來(lái)更好地理解它。在這個(gè)博客中,我將使用Ragnar(我最喜歡的虛構(gòu)角色)的圖像來(lái)執(zhí)行轉(zhuǎn)換。
2. Normalize
此操作將獲取張量圖像,并使用平均值和標(biāo)準(zhǔn)差對(duì)其進(jìn)行歸一化。它有3個(gè)參數(shù):mean, std, inplace。我們需要為3個(gè)通道提供一系列平均值,作為參數(shù)“mean”,“std”類似。如果將“inplace”設(shè)為T(mén)rue,則將計(jì)算得到的值覆蓋之前的值。
torchvision.transforms.Normalize([meanOfChannel1, meanOfChannel2, meanOfChannel3], [stdOfChannel1, stdOfChannel2, stdOfChannel3])
#Example:
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
3. CenterCrop
這將在中心裁剪給定的張量圖像。你可以以(高度、寬度)的形式向transforms.CenterCrop()提供要裁剪的大小作為輸入。讓我們?cè)趫D像上實(shí)現(xiàn)這個(gè)并進(jìn)行檢查。
transform = transforms.Compose([transforms.ToTensor(),transforms.CenterCrop((200,100))])
tensor_img = transform(image)
tensor_img.shape
Output: torch.Size([3, 200, 100])
如果只提供一個(gè)尺寸標(biāo)注而不是兩個(gè)尺寸標(biāo)注,會(huì)發(fā)生什么情況?
它將假設(shè)它是一個(gè)正方形,并且將生成一個(gè)(size, size))的裁剪。
如果給定的尺寸比原來(lái)的尺寸大呢?
沿著這些邊,圖像將填充0!
4. RandomHorizontalFlip
此變換將以給定的概率水平(隨機(jī))翻轉(zhuǎn)圖像。你可以通過(guò)參數(shù)“p”來(lái)設(shè)置這個(gè)概率。p的默認(rèn)值為0.5。
檢查我下面的例子來(lái)理解。
transform = transforms.Compose([transforms.RandomHorizontalFlip(p=0.9)])
tensor_img = transform(image)
tensor_img
查看原始圖像和翻轉(zhuǎn)的圖像!

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車(chē)電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車(chē)】汽車(chē)E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書(shū)】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開(kāi)始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 5 國(guó)產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來(lái)商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽(yáng)光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開(kāi)成長(zhǎng)空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營(yíng)收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?