如何使用Python將給定的圖像集進行聚類?
<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..featureMaps'}, '*')">featureMaps = <a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..model'}, '*')">model.predict(<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..img'}, '*')">img)
## Plotting Features
for a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..maps'}, '*')">maps in <a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..featureMaps'}, '*')">featureMaps:
plt.<a onclick="parent.postMessage({'referent':'.matplotlib.pyplot.figure'}, '*')">figure(figsize=(20,20))
<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..pltNum'}, '*')">pltNum = 1
for <a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..a(chǎn)'}, '*')">a in range(8):
for <a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..b'}, '*')">b in <a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..range'}, '*')">range(8):
plt.<a onclick="parent.postMessage({'referent':'.matplotlib.pyplot.subplot'}, '*')">subplot(8, 8, <a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..pltNum'}, '*')">pltNum)
plt.<a onclick="parent.postMessage({'referent':'.matplotlib.pyplot.imshow'}, '*')">imshow(<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..maps'}, '*')">maps[: ,: ,<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..pltNum'}, '*')">pltNum - 1], cmap='gray')
<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..pltNum'}, '*')">pltNum += 1
plt.<a onclick="parent.postMessage({'referent':'.matplotlib.pyplot.show'}, '*')">show()
接下來我們將重點介紹如何來創(chuàng)建我們的聚類算法。設計圖像聚類算法在本節(jié)中,我們使用Kaggle上的 keep-babies-safe 數(shù)據(jù)集。https://www.kaggle.com/akash14/keep-babies-safe首先,我們創(chuàng)建一個圖像聚類模型,來將給定的圖像分為兩類,即玩具或消費品,以下是來自該數(shù)據(jù)集的一些圖像。
以下代碼實現(xiàn)我們的聚類算法:##################### Making Essential Imports ############################
import sklearn
import os
import sys
import matplotlib.pyplot as plt
import cv2
import pytesseract
import numpy as np
import pandas as pd
import tensorflow as tf
conf = r'-- oem 2'
#####################################
# Defining a skeleton for our #
# DataFrame #
#####################################
DataFrame = {
'photo_name' : [],
'flattenPhoto' : [],
'text' : [],
}
#######################################################################################
# The Approach is to apply transfer learning hence using Resnet50 as my #
# pretrained model #
#######################################################################################
MyModel = tf.keras.models.Sequential()
MyModel.a(chǎn)dd(tf.keras.a(chǎn)pplications.ResNet50(
include_top = False, weights='imagenet', pooling='avg',
))
# freezing weights for 1st layer
MyModel.layers[0].trainable = False
### Now defining dataloading Function
def LoadDataAndDoEssentials(path, h, w):
img = cv2.imread(path)
DataFrame['text'].a(chǎn)ppend(pytesseract.image_to_string(img, config = conf))
img = cv2.resize(img, (h, w))
## Expanding image dims so this represents 1 sample
img = img = np.expand_dims(img, 0)
img = tf.keras.a(chǎn)pplications.resnet50.preprocess_input(img)
extractedFeatures = MyModel.predict(img)
extractedFeatures = np.a(chǎn)rray(extractedFeatures)
DataFrame['flattenPhoto'].a(chǎn)ppend(extractedFeatures.flatten())
### with this all done lets write the iterrrative loop
def ReadAndStoreMyImages(path):
list_ = os.listdir(path)
for mem in list_:
DataFrame['photo_name'].a(chǎn)ppend(mem)
imagePath = path + '/' + mem
LoadDataAndDoEssentials(imagePath, 224, 224)
### lets give the address of our Parent directory and start
path = 'enter your data's path here'
ReadAndStoreMyImages(path)
######################################################
# lets now do clustering #
######################################################
Training_Feature_vector = np.a(chǎn)rray(DataFrame['flattenPhoto'], dtype = 'float64')
from sklearn.cluster import AgglomerativeClustering
kmeans = AgglomerativeClustering(n_clusters = 2)
kmeans.fit(Training_Feature_vector)
A little explanation for the above code:
上面的代碼使用Resnet50(一種經(jīng)過預先訓練的CNN)進行特征提取,我們只需移除其頭部或用于預測類別的神經(jīng)元的最后一層,然后將圖像輸入到CNN并獲得特征向量作為輸出,實際上,這是我們的CNN在Resnet50的倒數(shù)第二層學習到的所有特征圖的扁平數(shù)組?梢詫⒋溯敵鱿蛄刻峁┙o進行圖像聚類的任何聚類算法。讓我向你展示通過這種方法創(chuàng)建的簇。
該可視化的代碼如下## lets make this a dataFrame
import seaborn as sb
import matplotlib.pyplot as plt
dimReducedDataFrame = pd.DataFrame(Training_Feature_vector)
dimReducedDataFrame = dimReducedDataFrame.rename(columns = { 0: 'V1', 1 : 'V2'})
dimReducedDataFrame['Category'] = list (df['Class_of_image'])
plt.figure(figsize = (10, 5))
sb.scatterplot(data = dimReducedDataFrame, x = 'V1', y = 'V2',hue = 'Category')
plt.grid(True)
plt.show()
結論本文通過解釋如何使用深度學習和聚類將視覺上相似的圖像聚在一起形成簇,而無需創(chuàng)建數(shù)據(jù)集并在其上訓練CNN。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀”爆發(fā)至今,五類新物種登上歷史舞臺
- 5 國產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計算迎來商業(yè)化突破,但落地仍需時間
- 7 東陽光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長空間
- 8 地平線自動駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營收大增主靠小件,虧損繼續(xù)又逢關稅,能否乘機器人東風翻身?