訂閱
糾錯
加入自媒體

detectron2系列:config軟件包

# Solver

# ---------------------------------------------------------------------------- #

_C.SOLVER = CN()

# See detectron2/solver/build.py for LR scheduler options

_C.SOLVER.LR_SCHEDULER_NAME = "WarmupMultiStepLR"

_C.SOLVER.MAX_ITER = 40000

_C.SOLVER.BASE_LR = 0.001

_C.SOLVER.MOMENTUM = 0.9

_C.SOLVER.WEIGHT_DECAY = 0.0001

# The weight decay that's applied to parameters of normalization layers

# (typically the affine transformation)

_C.SOLVER.WEIGHT_DECAY_NORM = 0.0

_C.SOLVER.GAMMA = 0.1

# The iteration number to decrease learning rate by GAMMA.

_C.SOLVER.STEPS = (30000,)

_C.SOLVER.WARMUP_FACTOR = 1.0 / 1000

_C.SOLVER.WARMUP_ITERS = 1000

_C.SOLVER.WARMUP_M(jìn)ETHOD = "linear"

# Save a checkpoint after every this number of iterations

_C.SOLVER.CHECKPOINT_PERIOD = 5000

# Number of images per batch across all machines.

# If we have 16 GPUs and IMS_PER_BATCH = 32,

# each GPU will see 2 images per batch.

_C.SOLVER.IMS_PER_BATCH = 16

# Detectron v1 (and previous detection code) used a 2x higher LR and 0 WD for

# biases. This is not useful (at least for recent models). You should avoid

# changing these and they exist only to reproduce Detectron v1 training if

# desired.

_C.SOLVER.BIAS_LR_FACTOR = 1.0

_C.SOLVER.WEIGHT_DECAY_BIAS = _C.SOLVER.WEIGHT_DECAY

# ---------------------------------------------------------------------------- #

# Specific test options

# ---------------------------------------------------------------------------- #

_C.TEST = CN()

# For end-to-end tests to verify the expected accuracy.

# Each item is [task, metric, value, tolerance]

# e.g.: [['bbox', 'AP', 38.5, 0.2]]

_C.TEST.EXPECTED_RESULTS = []

# The period (in terms of steps) to evaluate the model during training.

# Set to 0 to disable.

_C.TEST.EVAL_PERIOD = 0

# The sigmas used to calculate keypoint OKS.

# When empty it will use the defaults in COCO.

# Otherwise it should have the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS.

_C.TEST.KEYPOINT_OKS_SIGMAS = []

# Maximum number of detections to return per image during inference (100 is

# based on the limit established for the COCO dataset).

_C.TEST.DETECTIONS_PER_IMAGE = 100

_C.TEST.AUG = CN({"ENABLED": False})

_C.TEST.AUG.MIN_SIZES = (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)

_C.TEST.AUG.MAX_SIZE = 4000

_C.TEST.AUG.FLIP = True

_C.TEST.PRECISE_BN = CN({"ENABLED": False})

_C.TEST.PRECISE_BN.NUM_ITER = 200

# ---------------------------------------------------------------------------- #

# Misc options

# ---------------------------------------------------------------------------- #

# Directory where output files are written

_C.OUTPUT_DIR = "./output"

# Set seed to negative to fully randomize everything.

# Set seed to positive to use a fixed seed. Note that a fixed seed does not

# guarantee fully deterministic behavior.

_C.SEED = -1

# Benchmark different cudnn algorithms.

# If input images have very different sizes, this option will have large overhead

# for about 10k iterations. It usually hurts total time, but can benefit for certain models.

# If input images have the same or similar sizes, benchmark is often helpful.

_C.CUDNN_BENCHMARK = False

# The period (in terms of steps) for minibatch visualization at train time.

# Set to 0 to disable.

_C.VIS_PERIOD = 0

# global config is for quick hack purposes.

# You can set them in command line or config files,

# and access it with:

# from detectron2.config import global_cfg

# print(global_cfg.HACK)

# Do not commit any configs into it.

_C.GLOBAL = CN()

_C.GLOBAL.HACK = 1.0


<上一頁  1  2  3  4  
聲明: 本文由入駐維科號的作者撰寫,觀點(diǎn)僅代表作者本人,不代表OFweek立場。如有侵權(quán)或其他問題,請聯(lián)系舉報(bào)。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個(gè)字

您提交的評論過于頻繁,請輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無評論

暫無評論

    掃碼關(guān)注公眾號
    OFweek人工智能網(wǎng)
    獲取更多精彩內(nèi)容
    文章糾錯
    x
    *文字標(biāo)題:
    *糾錯內(nèi)容:
    聯(lián)系郵箱:
    *驗(yàn) 證 碼:

    粵公網(wǎng)安備 44030502002758號