使用TensorFlow從頭開(kāi)始實(shí)現(xiàn)這個(gè)架構(gòu)
在此之前,我已經(jīng)討論了MobileNet的體系結(jié)構(gòu)
接下來(lái),我們將看到如何使用TensorFlow從頭開(kāi)始實(shí)現(xiàn)這個(gè)架構(gòu)。
實(shí)現(xiàn):
MobileNet架構(gòu):
圖顯示了我們將在代碼中實(shí)現(xiàn)的MobileNet體系結(jié)構(gòu)。網(wǎng)絡(luò)從Conv、BatchNorm、ReLU塊開(kāi)始,并從其上跟隨多個(gè)MobileNet塊。它最終以一個(gè)平均池和一個(gè)完全連接的層結(jié)束,并激活Softmax。
我們看到該體系結(jié)構(gòu)有一個(gè)模式——Conv-dw/s1,后跟Conv/s1,依此類(lèi)推。這里dw是深度層和步幅數(shù),然后是Conv層和步幅數(shù)。這兩條線是MobileNet區(qū)塊。
“Filter Shape”列給出了核大小和要使用的濾波器數(shù)量的詳細(xì)信息。列的最后一個(gè)數(shù)字表示濾波器的數(shù)量。我們看到濾波器數(shù)量從32逐漸增加到64,從64逐漸增加到128,從128逐漸增加到256,以此類(lèi)推。
最后一列顯示了隨著我們深入網(wǎng)絡(luò),圖像的大小是如何變化的。輸入大小選擇為224*224像素,有3個(gè)通道,輸出層分類(lèi)為1000類(lèi)。
正常CNN架構(gòu)塊之間的差異(左),與MobileNet架構(gòu)(右):
構(gòu)建網(wǎng)絡(luò)時(shí)需要記住的幾件事:
所有層之后都是批量標(biāo)準(zhǔn)化和ReLU非線性。
與具有Conv2D層的普通CNN模型不同,MobileNet具有Depthwise Conv層,如圖所示。
工作流
從TensorFlow庫(kù)導(dǎo)入所有必要的層
為MobileNet塊編寫(xiě)輔助函數(shù)
構(gòu)建模型的主干
使用helper函數(shù)構(gòu)建模型的主要部分
導(dǎo)入圖層
import tensorflow as tf
# 導(dǎo)入所有必要的層
from tensorflow.keras.layers import Input, DepthwiseConv2D
from tensorflow.keras.layers import Conv2D, BatchNormalization
from tensorflow.keras.layers import ReLU, AvgPool2D, Flatten, Dense
from tensorflow.keras import Model
Keras已經(jīng)內(nèi)置了一個(gè)DepthwiseConv層,所以我們不需要從頭開(kāi)始創(chuàng)建它。
MobileNet塊
MobileNet塊的表示
要為MobileNet塊創(chuàng)建函數(shù),我們需要以下步驟:
函數(shù)的輸入:
a.張量(x)
b.卷積層的濾波器數(shù)量(濾波器)
c.卷積層的步長(zhǎng)(步長(zhǎng))
運(yùn)行:
a.應(yīng)用3x3分步卷積層,然后是批量標(biāo)準(zhǔn)化層和ReLU激活
b.應(yīng)用帶有1x1卷積層的濾波器,然后是批量標(biāo)準(zhǔn)化層和ReLU激活
返回張量(輸出)
這3個(gè)步驟在下面的代碼塊中實(shí)現(xiàn)。
# MobileNet block
def mobilnet_block (x, filters, strides):
x = DepthwiseConv2D(kernel_size = 3, strides = strides, padding = 'same')(x)
x = BatchNormalization()(x)
x = ReLU()(x)
x = Conv2D(filters = filters, kernel_size = 1, strides = 1)(x)
x = BatchNormalization()(x)
x = ReLU()(x)
return x
構(gòu)建模型的主干
如圖2所示,第一層為Conv/s2,濾波器形狀為3x32。
模型的主干
# 模型的主干
input = Input(shape = (224,224,3))
x = Conv2D(filters = 32, kernel_size = 3, strides = 2, padding = 'same')(input)
x = BatchNormalization()(x)
x = ReLU()(x)
模型的主要部分:
# 模型的主要部分
x = mobilnet_block(x, filters = 64, strides = 1)
x = mobilnet_block(x, filters = 128, strides = 2)
x = mobilnet_block(x, filters = 128, strides = 1)
x = mobilnet_block(x, filters = 256, strides = 2)
x = mobilnet_block(x, filters = 256, strides = 1)
x = mobilnet_block(x, filters = 512, strides = 2)
for _ in range (5):
x = mobilnet_block(x, filters = 512, strides = 1)
x = mobilnet_block(x, filters = 1024, strides = 2)
x = mobilnet_block(x, filters = 1024, strides = 1)
x = AvgPool2D (pool_size = 7, strides = 1, data_format='channels_first')(x)
output = Dense (units = 1000, activation = 'softmax')(x)
model = Model(inputs=input, outputs=output)
model.summary()
模型摘要的一個(gè)片段

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
-
機(jī)器人奧運(yùn)會(huì)戰(zhàn)報(bào):宇樹(shù)機(jī)器人摘下首金,天工Ultra搶走首位“百米飛人”
-
存儲(chǔ)圈掐架!江波龍起訴佰維,索賠121萬(wàn)
-
長(zhǎng)安汽車(chē)母公司突然更名:從“中國(guó)長(zhǎng)安”到“辰致科技”
-
豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
-
字節(jié)AI Lab負(fù)責(zé)人李航卸任后返聘,Seed進(jìn)入調(diào)整期
-
員工持股爆雷?廣汽埃安緊急回應(yīng)
-
中國(guó)“智造”背后的「關(guān)鍵力量」
-
小米汽車(chē)研發(fā)中心重磅落地,寶馬家門(mén)口“搶人”
最新活動(dòng)更多
-
即日-9.16點(diǎn)擊進(jìn)入 >> 【限時(shí)福利】TE 2025國(guó)際物聯(lián)網(wǎng)展·深圳站
-
10月23日火熱報(bào)名中>> 2025是德科技創(chuàng)新技術(shù)峰會(huì)
-
10月23日立即報(bào)名>> Works With 開(kāi)發(fā)者大會(huì)深圳站
-
10月24日立即參評(píng)>> 【評(píng)選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評(píng)選
-
11月27日立即報(bào)名>> 【工程師系列】汽車(chē)電子技術(shù)在線大會(huì)
-
12月18日立即報(bào)名>> 【線下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
推薦專(zhuān)題
- 1 先進(jìn)算力新選擇 | 2025華為算力場(chǎng)景發(fā)布會(huì)暨北京xPN伙伴大會(huì)成功舉辦
- 2 人形機(jī)器人,正狂奔在批量交付的曠野
- 3 宇樹(shù)機(jī)器人撞人事件的深度剖析:六維力傳感器如何成為人機(jī)安全的關(guān)鍵屏障
- 4 解碼特斯拉新AI芯片戰(zhàn)略 :從Dojo到AI5和AI6推理引擎
- 5 AI版“四萬(wàn)億刺激”計(jì)劃來(lái)了
- 6 2025年8月人工智能投融資觀察
- 7 8 a16z最新AI百?gòu)?qiáng)榜:硅谷頂級(jí)VC帶你讀懂全球生成式AI賽道最新趨勢(shì)
- 9 Manus跑路,大廠掉線,只能靠DeepSeek了
- 10 地平線的野心:1000萬(wàn)套HSD上車(chē)