如何使用深度學(xué)習(xí)生成模糊背景?
步驟2:用于可視化從輸入中獲取的分割圖像的功能。def run_visualization():
"""Inferences DeepLab model and visualizes result."""
try:
original_im = Image.open(IMAGE_NAME)
except IOError:
print('Cannot retrieve image. Please check url: ' + url)
returnprint('running deeplab on image')
resized_im, seg_map = MODEL.run(original_im)
vis_segmentation(resized_im, seg_map)
return resized_im, seg_map
2.1:使用前面顯示的圖像調(diào)用上述功能。IMAGE_NAME = 'download2.jpg'
resized_im, seg_map = run_visualization()
分割后輸出。
2.2:現(xiàn)在,我們讀取輸入圖像并將其轉(zhuǎn)換為numpy數(shù)組。print(type(resized_im))
numpy_image = np.a(chǎn)rray(resized_im)
步驟3:分離背景和前景。在此步驟中,我們創(chuàng)建圖像的副本,然后,通過(guò)將背景中的值替換為0,并在已創(chuàng)建蒙版的位置保留255,將背景和前景與分割后的圖像分開(kāi),此處7表示汽車類別。person_not_person_mapping = deepcopy(numpy_image)
person_not_person_mapping[seg_map 。 7] = 0
person_not_person_mapping[seg_map == 7] = 255
3.1:可視化分離的蒙版圖像plt.imshow(person_not_person_mapping)
正如上一步中所述,背景已被黑色替換,汽車蒙版已變?yōu)榘咨,同樣,通過(guò)替換這些值,我們也沒(méi)有丟失任何重要信息。
3.2:調(diào)整蒙版圖像的大小使其等于原始圖像。在分割過(guò)程之后,圖像的大小減小了,在我們的例子中,圖像的大小減小為(300 x 500),因此我們將圖像的大小調(diào)整為原始大小,即(900 x 596)。orig_imginal = Image.open(IMAGE_NAME)
orig_imginal = np.a(chǎn)rray(orig_imginal)mapping_resized = cv2.resize(person_not_person_mapping,
(orig_imginal.shape[1],
orig_imginal.shape[0]),
Image.ANTIALIAS)
mapping_resized.shape
3.3:二值化由于調(diào)整了大小,圖像生成的值在0,1,2…255之間,為了再次將值限制在0–255之間,我們必須使用Otsu的Binarization技術(shù)對(duì)圖像進(jìn)行二值化。簡(jiǎn)而言之,Otsu的Binarization是一種尋找灰度圖像閾值的自適應(yīng)方法,它遍歷0-255范圍內(nèi)的所有可能閾值,并找到給定圖像的最佳可能閾值。在內(nèi)部,它基于一些統(tǒng)計(jì)概念(例如方差),以根據(jù)所選閾值找出類別。一旦選擇了最佳閾值,則大于閾值的像素值將被視為白色像素,小于閾值的像素值將被視為黑色像素。
gray = cv2.cvtColor(mapping_resized, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray,(15,15),0)
ret3,thresholded_img = cv2.threshold(blurred,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
plt.imshow(thresholded_img)

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
6月20日立即下載>> 【白皮書】精準(zhǔn)測(cè)量 安全高效——福祿克光伏行業(yè)解決方案
-
7月3日立即報(bào)名>> 【在線會(huì)議】英飛凌新一代智能照明方案賦能綠色建筑與工業(yè)互聯(lián)
-
7月22-29日立即報(bào)名>> 【線下論壇】第三屆安富利汽車生態(tài)圈峰會(huì)
-
7.30-8.1火熱報(bào)名中>> 全數(shù)會(huì)2025(第六屆)機(jī)器人及智能工廠展
-
7月31日免費(fèi)預(yù)約>> OFweek 2025具身機(jī)器人動(dòng)力電池技術(shù)應(yīng)用大會(huì)
-
免費(fèi)參會(huì)立即報(bào)名>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
推薦專題
- 1 AI 眼鏡讓百萬(wàn) APP「集體失業(yè)」?
- 2 大廠紛紛入局,百度、阿里、字節(jié)搶奪Agent話語(yǔ)權(quán)
- 3 深度報(bào)告|中國(guó)AI產(chǎn)業(yè)正在崛起成全球力量,市場(chǎng)潛力和關(guān)鍵挑戰(zhàn)有哪些?
- 4 一文看懂視覺(jué)語(yǔ)言動(dòng)作模型(VLA)及其應(yīng)用
- 5 上海跑出80億超級(jí)獨(dú)角獸:獲上市公司戰(zhàn)投,干人形機(jī)器人
- 6 國(guó)家數(shù)據(jù)局局長(zhǎng)劉烈宏調(diào)研格創(chuàng)東智
- 7 下一代入口之戰(zhàn):大廠為何紛紛押注智能體?
- 8 百億AI芯片訂單,瘋狂傾銷中東?
- 9 Robotaxi新消息密集釋放,量產(chǎn)元年誰(shuí)在領(lǐng)跑?
- 10 格斗大賽出圈!人形機(jī)器人致命短板曝光:頭腦過(guò)于簡(jiǎn)單