如何使用Transformer在Twitter數(shù)據(jù)上進(jìn)行情感分類
介紹Transformer的發(fā)明最近取代了自然語(yǔ)言處理的世界。transformers是完全無(wú)視傳統(tǒng)的基于序列的網(wǎng)絡(luò)。RNN是用于基于序列的任務(wù)(如文本生成,文本分類等)的最初武器。但是,隨著LSTM和GRU單元的出現(xiàn),解決了捕捉文本中長(zhǎng)期依賴關(guān)系的問(wèn)題。但是,使用LSTM單元學(xué)習(xí)模型是一項(xiàng)艱巨的任務(wù),因?yàn)槲覀儫o(wú)法使其并行學(xué)習(xí)。
Transformer類似于以編碼器-解碼器為基礎(chǔ)的網(wǎng)絡(luò),并在其末尾添加了注意層,以使模型能夠根據(jù)文本的相關(guān)上下文進(jìn)行有效學(xué)習(xí)。讓我們看看如何使用這個(gè)很棒的python包裝器。你需要?jiǎng)?chuàng)建一個(gè)Twitter開(kāi)發(fā)人員帳戶,以便可以訪問(wèn)其API并利用許多不可思議的功能。
請(qǐng)通過(guò)此來(lái)了解它。
先決條件構(gòu)建簡(jiǎn)單的Transformer模型時(shí)要考慮到特定的自然語(yǔ)言處理(NLP)任務(wù)。每個(gè)此類模型都配備有旨在最適合它們要執(zhí)行的任務(wù)的特性和功能。使用簡(jiǎn)單Transformer模型的高級(jí)過(guò)程遵循相同的模式。我們將使用庫(kù)中的文本分類模塊來(lái)構(gòu)建情感分類器模型。通過(guò)以下代碼安裝簡(jiǎn)單的轉(zhuǎn)換器庫(kù)。pip install simpletransfomers
最好創(chuàng)建一個(gè)虛擬環(huán)境并進(jìn)行安裝。在安裝軟件包后,請(qǐng)按照以下鏈接中提到的步驟來(lái)組織你的Twitter開(kāi)發(fā)帳戶。設(shè)置帳戶后,獲取帳戶的記名令牌并將其保存在YAML文件中,如下所示:
bearer_token: xxxxxxxxxxxxxxxxxxxxxxx
模型對(duì)于此任務(wù),我們將使用Kaggle的以下數(shù)據(jù)集:數(shù)據(jù)集有兩列,一列具有文本,另一列具有相應(yīng)的情感。讓我們可視化數(shù)據(jù)集及其類分布。
數(shù)據(jù)集中有以下情感類別:*悲傷,憤怒,愛(ài),驚奇,恐懼,快樂(lè),*你可以在下圖中看到其分布
在對(duì)數(shù)據(jù)集進(jìn)行建模之前,我們可以執(zhí)行一些基本的預(yù)處理步驟,例如清除文本,使用數(shù)字對(duì)類進(jìn)行編碼等,以便最終的數(shù)據(jù)幀看起來(lái)像下面的圖像。
我已將以下內(nèi)容定義為模型訓(xùn)練的輸入配置。我已經(jīng)使用XL-Net對(duì)數(shù)據(jù)集進(jìn)行建模,因?yàn)樗荰ransformer的高級(jí)版本,可以捕獲較長(zhǎng)序列的上下文。max_seq_length保持為64,因?yàn)樵跀?shù)據(jù)集中找到的最大token數(shù)為66,如果你希望為更大的文本輸入訓(xùn)練模型,可以根據(jù)需要將其增加到更大的值。from simpletransformers.classification import ClassificationModel, ClassificationArgs
model_args = ClassificationArgs()
model_args.num_train_epochs = 4
model_args.reprocess_input_data = True
model_args.save_best_model = True
model_args.save_optimizer_and_scheduler = False
model_args.overwrite_output_dir = True
model_args.manual_seed = 4
model_args.use_multiprocessing = True
model_args.train_batch_size = 16
model_args.eval_batch_size = 8
model_args.max_seq_length = 64
model = ClassificationModel("xlnet",
"xlnet-base-cased",
num_labels=6,
args=model_args,
use_cuda=True)
訓(xùn)練模型后,你可以獲取驗(yàn)證數(shù)據(jù)集的指標(biāo)并評(píng)估其性能。如果你之前未進(jìn)行任何配置,則模型權(quán)重將保存在 output/ directory 中。接下來(lái)是使用Twitter API獲得推文的部分。你可以使用該API的最大推文數(shù)量為100,可以通過(guò)使用高級(jí)帳戶進(jìn)一步增加?梢允褂靡韵麓a片段獲取特定句柄的tweet。def create_twitter_url(handle, max_results):
mrf = "max_results={}".format(max_results)
q = "query=from:{}".format(handle)
url = "https://api.twitter.com/2/tweets/search/recent?{}&{}".format(
mrf, q
)
return url
def process_yaml():
with open("keys.yaml") as file:
return yaml.safe_load(file)
def create_bearer_token(data):
return data["search_tweets_api"]["bearer_token"]
def twitter_auth_and_connect(bearer_token, url):
headers = {"Authorization": "Bearer {}".format(bearer_token)}
response = requests.request("GET", url, headers=headers)
return response.json()
url = create_twitter_url('user',10)
data = process_yaml()
bearer_token = create_bearer_token(data)
response = twitter_auth_and_connect(bearer_token, url)
text_list = [x['text'] for x in response['data']]
cleaned_text = [re.findall(regex, x)[0] for x in text_list]
上面的代碼獲取了“user”句柄的Twitter響應(yīng),并將獲得相應(yīng)句柄的最新10條推文。清除了這些推文以刪除任何表情符號(hào),鏈接等。例如,讓我們看一下一些著名的社交媒體鏈最近發(fā)布的20條推文的情感,以及他們對(duì)這些推文的情緒。
那些著名的社交媒體鏈的情感計(jì)數(shù)與其他人相比,Facebook似乎度過(guò)了一個(gè)美好的一周。本文我們使用Twitter API和Transfer構(gòu)建了一個(gè)簡(jiǎn)單的情感分類應(yīng)用程序,你還可以實(shí)時(shí)進(jìn)行操作,并進(jìn)一步擴(kuò)展此用例,分析任何暴力或悲傷的推特。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
-
機(jī)器人奧運(yùn)會(huì)戰(zhàn)報(bào):宇樹(shù)機(jī)器人摘下首金,天工Ultra搶走首位“百米飛人”
-
存儲(chǔ)圈掐架!江波龍起訴佰維,索賠121萬(wàn)
-
長(zhǎng)安汽車母公司突然更名:從“中國(guó)長(zhǎng)安”到“辰致科技”
-
豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
-
字節(jié)AI Lab負(fù)責(zé)人李航卸任后返聘,Seed進(jìn)入調(diào)整期
-
員工持股爆雷?廣汽埃安緊急回應(yīng)
-
中國(guó)“智造”背后的「關(guān)鍵力量」
-
小米汽車研發(fā)中心重磅落地,寶馬家門口“搶人”
最新活動(dòng)更多
-
即日-9.16點(diǎn)擊進(jìn)入 >> 【限時(shí)福利】TE 2025國(guó)際物聯(lián)網(wǎng)展·深圳站
-
10月23日火熱報(bào)名中>> 2025是德科技創(chuàng)新技術(shù)峰會(huì)
-
10月23日立即報(bào)名>> Works With 開(kāi)發(fā)者大會(huì)深圳站
-
10月24日立即參評(píng)>> 【評(píng)選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評(píng)選
-
11月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
12月18日立即報(bào)名>> 【線下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
推薦專題
- 1 先進(jìn)算力新選擇 | 2025華為算力場(chǎng)景發(fā)布會(huì)暨北京xPN伙伴大會(huì)成功舉辦
- 2 人形機(jī)器人,正狂奔在批量交付的曠野
- 3 宇樹(shù)機(jī)器人撞人事件的深度剖析:六維力傳感器如何成為人機(jī)安全的關(guān)鍵屏障
- 4 解碼特斯拉新AI芯片戰(zhàn)略 :從Dojo到AI5和AI6推理引擎
- 5 AI版“四萬(wàn)億刺激”計(jì)劃來(lái)了
- 6 2025年8月人工智能投融資觀察
- 7 8 a16z最新AI百?gòu)?qiáng)榜:硅谷頂級(jí)VC帶你讀懂全球生成式AI賽道最新趨勢(shì)
- 9 Manus跑路,大廠掉線,只能靠DeepSeek了
- 10 地平線的野心:1000萬(wàn)套HSD上車