訂閱
糾錯(cuò)
加入自媒體

趨勢(shì)丨設(shè)計(jì)的代價(jià):深度學(xué)習(xí)已經(jīng)接近計(jì)算極限

深度學(xué)習(xí)時(shí)代AI模型需規(guī)模化擴(kuò)展

現(xiàn)代AI模型需要消耗大量電力,而且對(duì)電力的需求正以驚人的速度增長(zhǎng)。在深度學(xué)習(xí)時(shí)代,構(gòu)建一流AI模型所需要的計(jì)算資源平均每3.4個(gè)月翻一番。

在當(dāng)今以深度學(xué)習(xí)為中心的研究范式當(dāng)中,AI的主要進(jìn)步主要依賴(lài)于模型的規(guī);瘮U(kuò)展:數(shù)據(jù)集更大、模型更大、計(jì)算資源更大。

在訓(xùn)練過(guò)程中,神經(jīng)網(wǎng)絡(luò)需要為每一條數(shù)據(jù)執(zhí)行一整套冗長(zhǎng)的數(shù)學(xué)運(yùn)算(正向傳播與反向傳播),并以復(fù)雜的方式更新模型參數(shù)。

在現(xiàn)實(shí)環(huán)境中部署并運(yùn)行AI模型,所帶來(lái)的能源消耗量甚至高于訓(xùn)練過(guò)程。實(shí)際上,神經(jīng)網(wǎng)絡(luò)全部算力成本中的80%到90%來(lái)自推理階段,而非訓(xùn)練階段。

因此,數(shù)據(jù)集規(guī)模越大,與之對(duì)應(yīng)的算力與能源需求也在飛速增長(zhǎng)。模型中包含的參數(shù)量越大,推理階段所帶來(lái)的電力需求就越夸張。

AI芯天下丨趨勢(shì)丨設(shè)計(jì)的代價(jià):深度學(xué)習(xí)已經(jīng)接近計(jì)算極限

雖然深度網(wǎng)絡(luò)會(huì)是解決方案的一部分,但還需要涉及組合原則和因果模型的互補(bǔ)方法,以捕捉數(shù)據(jù)的基本結(jié)構(gòu)。此外,面對(duì)組合性爆炸,需要要再次思考如何訓(xùn)練和評(píng)估視覺(jué)算法。

每一次人工智能低谷來(lái)臨之前,都會(huì)有科學(xué)家夸大和炒作他們創(chuàng)造的潛力,僅僅說(shuō)他們的算法就能夠很好地完成某項(xiàng)任務(wù)是不夠的。

對(duì)大多數(shù)問(wèn)題來(lái)說(shuō),深度學(xué)習(xí)并不是正確的解決方法,不要試圖為所有的問(wèn)題尋找通用人工智能解決方案,因?yàn)樗揪筒淮嬖凇?/p>

結(jié)尾:

深度學(xué)習(xí)的發(fā)展可能已達(dá)極限,但其影響還將持續(xù)深遠(yuǎn)。為了避免在“人工智能冬天”中被淘汰的命運(yùn),能做的最好的事情就是明確你要解決的問(wèn)題,并理解其本質(zhì);然后,尋找為特定問(wèn)題提供解決方案的直觀(guān)路徑的方法。

<上一頁(yè)  1  2  3  
聲明: 本文由入駐維科號(hào)的作者撰寫(xiě),觀(guān)點(diǎn)僅代表作者本人,不代表OFweek立場(chǎng)。如有侵權(quán)或其他問(wèn)題,請(qǐng)聯(lián)系舉報(bào)。

發(fā)表評(píng)論

0條評(píng)論,0人參與

請(qǐng)輸入評(píng)論內(nèi)容...

請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字

您提交的評(píng)論過(guò)于頻繁,請(qǐng)輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無(wú)評(píng)論

暫無(wú)評(píng)論

    掃碼關(guān)注公眾號(hào)
    OFweek人工智能網(wǎng)
    獲取更多精彩內(nèi)容
    文章糾錯(cuò)
    x
    *文字標(biāo)題:
    *糾錯(cuò)內(nèi)容:
    聯(lián)系郵箱:
    *驗(yàn) 證 碼:

    粵公網(wǎng)安備 44030502002758號(hào)