使用Tensorflow+OpenCV構(gòu)建會玩石頭剪刀布的AI
我已經(jīng)使用DenseNet121模型進(jìn)行特征提取,其輸出最終將輸入到我自己的Dense神經(jīng)網(wǎng)絡(luò)中。
densenet = DenseNet121(include_top=False, weights='imagenet', classes=3,input_shape=(300,300,3))
densenet.trainable=True
def genericModel(base):
model = Sequential()
model.a(chǎn)dd(base)
model.a(chǎn)dd(MaxPool2D())
model.a(chǎn)dd(Flatten())
model.a(chǎn)dd(Dense(3,activation='softmax'))
model.compile(optimizer=Adam(),loss='categorical_crossentropy',metrics=['acc'])
return model
dnet = genericModel(densenet)
history = dnet.fit(
x=imgData,
y=labels,
batch_size = 16,
epochs=8,
callbacks=[checkpoint,es],
validation_split=0.2
)
關(guān)鍵點(diǎn) :由于我們的圖片尺寸為300x300,因此指定的輸入形狀也為3x300x300,3代表RGB的維度信息,因此該層具有足夠的神經(jīng)元來處理整個圖像。我們將DenseNet層用作第一層,然后使用我們自己的Dense神經(jīng)網(wǎng)絡(luò)。我已將可訓(xùn)練參數(shù)設(shè)置為True,這也會重新訓(xùn)練DenseNet的權(quán)重。盡管花了很多時間,但是這給了我更好的結(jié)果。我建議你在自己的實(shí)現(xiàn)中嘗試通過更改此類參數(shù)(也稱為超參數(shù))來嘗試不同的迭代。由于我們有3類Rock-Paper-Scissor,最后一層是具有3個神經(jīng)元和softmax激活的全連接層。最后一層返回圖像屬于3類中特定類的概率。如果你引用的是GitHub repo(https://github.com/HOD101s/RockPaperScissor-AI-) 的train.py,則要注意數(shù)據(jù)準(zhǔn)備和模型訓(xùn)練!至此,我們已經(jīng)收集了數(shù)據(jù),建立并訓(xùn)練了模型,剩下的部分是使用OpenCV進(jìn)行部署OpenCV實(shí)現(xiàn):此實(shí)現(xiàn)的流程很簡單:啟動網(wǎng)絡(luò)攝像頭并讀取每個幀將此框架傳遞給模型進(jìn)行分類,即預(yù)測類用電腦隨意移動計算分?jǐn)?shù)def prepImg(pth):
return cv2.resize(pth,(300,300)).reshape(1,300,300,3)
with open('model.json', 'r') as f:
loaded_model_json = f.read()
loaded_model = model_from_json(loaded_model_json)
loaded_model.load_weights("modelweights.h5")
print("Loaded model from disk")
for rounds in range(NUM_ROUNDS):
pred = ""
for i in range(90):
ret,frame = cap.read()
# Countdown
if i//20 < 3 :
frame = cv2.putText(frame,str(i//20+1),(320,100),cv2.FONT_HERSHEY_SIMPLEX,3,(250,250,0),2,cv2.LINE_AA)
# Prediction
elif i/20 < 3.5:
pred = arr_to_shape[np.a(chǎn)rgmax(loaded_model.predict(prepImg(frame[50:350,100:400])))]
# Get Bots Move
elif i/20 == 3.5:
bplay = random.choice(options)
print(pred,bplay)
# Update Score
elif i//20 == 4:
playerScore,botScore = updateScore(pred,bplay,playerScore,botScore)
break
cv2.rectangle(frame, (100, 150), (300, 350), (255, 255, 255), 2)
frame = cv2.putText(frame,"Player : {} Bot : {}".format(playerScore,botScore),(120,400),cv2.FONT_HERSHEY_SIMPLEX,1,(250,250,0),2,cv2.LINE_AA)
frame = cv2.putText(frame,pred,(150,140),cv2.FONT_HERSHEY_SIMPLEX,1,(250,250,0),2,cv2.LINE_AA)
frame = cv2.putText(frame,"Bot Played : {}".format(bplay),(300,140),cv2.FONT_HERSHEY_SIMPLEX,1,(250,250,0),2,cv2.LINE_AA)
cv2.imshow('Rock Paper Scissor',frame)
if cv2.waitKey(1) & 0xff == ord('q'):
break
上面的代碼片段包含相當(dāng)重要的代碼塊,其余部分只是使游戲易于使用,RPS規(guī)則和得分。所以我們開始加載我們訓(xùn)練過的模型,它在開始程序的預(yù)測部分之前顯示倒計時,預(yù)測后,分?jǐn)?shù)會根據(jù)球員的動作進(jìn)行更新。
我們使用cv2.rectangle()顯式地繪制目標(biāo)區(qū)域,使用prepImg()函數(shù)預(yù)處理后,只有幀的這一部分傳遞給模型進(jìn)行預(yù)測。
結(jié)論:我們已經(jīng)成功地實(shí)現(xiàn)并學(xué)習(xí)了這個項目的工作原理,所以請繼續(xù)使用我的實(shí)現(xiàn)進(jìn)行其它實(shí)驗(yàn)學(xué)習(xí)。我做的一個主要的改進(jìn)可能是增加了手部檢測,所以我們不需要顯式地繪制目標(biāo)區(qū)域,模型將首先檢測手部位置,然后進(jìn)行預(yù)測。我鼓勵你改進(jìn)這個項目,并給我你的建議。精益求精!

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
6月20日立即下載>> 【白皮書】精準(zhǔn)測量 安全高效——福祿克光伏行業(yè)解決方案
-
7月3日立即報名>> 【在線會議】英飛凌新一代智能照明方案賦能綠色建筑與工業(yè)互聯(lián)
-
7月22-29日立即報名>> 【線下論壇】第三屆安富利汽車生態(tài)圈峰會
-
7.30-8.1火熱報名中>> 全數(shù)會2025(第六屆)機(jī)器人及智能工廠展
-
7月31日免費(fèi)預(yù)約>> OFweek 2025具身機(jī)器人動力電池技術(shù)應(yīng)用大會
-
免費(fèi)參會立即報名>> 7月30日- 8月1日 2025全數(shù)會工業(yè)芯片與傳感儀表展
推薦專題
- 1 AI 眼鏡讓百萬 APP「集體失業(yè)」?
- 2 大廠紛紛入局,百度、阿里、字節(jié)搶奪Agent話語權(quán)
- 3 深度報告|中國AI產(chǎn)業(yè)正在崛起成全球力量,市場潛力和關(guān)鍵挑戰(zhàn)有哪些?
- 4 上海跑出80億超級獨(dú)角獸:獲上市公司戰(zhàn)投,干人形機(jī)器人
- 5 國家數(shù)據(jù)局局長劉烈宏調(diào)研格創(chuàng)東智
- 6 下一代入口之戰(zhàn):大廠為何紛紛押注智能體?
- 7 百億AI芯片訂單,瘋狂傾銷中東?
- 8 Robotaxi新消息密集釋放,量產(chǎn)元年誰在領(lǐng)跑?
- 9 格斗大賽出圈!人形機(jī)器人致命短板曝光:頭腦過于簡單
- 10 一文看懂視覺語言動作模型(VLA)及其應(yīng)用