與災(zāi)難賽跑: 機(jī)器學(xué)習(xí)助力大規(guī)模自動化災(zāi)后損失評測
前不久墨西哥的7.4級地震,再次讓我們感受到了人類在自然災(zāi)害面前的渺小。天災(zāi)難以避免,但災(zāi)后及時的應(yīng)急響應(yīng)能夠很大程度地減少損失。在此過程中,超高分辨率衛(wèi)星就扮演著愈發(fā)重要的角色。不過,高清衛(wèi)星圖像依舊需要密集的人力來識別災(zāi)情,這遠(yuǎn)遠(yuǎn)滿足不了應(yīng)急響應(yīng)的需求。
本文將分享谷歌研究人員如何利用機(jī)器學(xué)習(xí)的方法自動檢測建筑物并評測損害程度。這一技術(shù)有望提高災(zāi)后報告的生成速度,幫助救災(zāi)團(tuán)隊(duì)按照受災(zāi)程度展開救援。
人類的歷史很大程度上是與自然災(zāi)害斗爭的歷史!從遠(yuǎn)古的大洪水時代到近年的大地震、從肆虐的臺風(fēng)到暴雨洪水,大范圍的自然災(zāi)害影響著成千上萬人的生命財(cái)產(chǎn)安全。在災(zāi)難發(fā)生時,大規(guī)模、有效的、及時、準(zhǔn)確的應(yīng)急響應(yīng)對于救災(zāi)來說至關(guān)重要。政府、公益組織、國際組織需要快速翔實(shí)地了解災(zāi)區(qū)情況并依此制定有效的救助計(jì)劃來優(yōu)化資源配置,最大程度的減少損失。
近年來具有0.3m分辨率的超高分辨率衛(wèi)星在災(zāi)難響應(yīng)中扮演著越來越重要的角色,為有關(guān)部門和決策者提供了前所未有的翔實(shí)視覺信息,包括地形地貌、城市建筑受災(zāi)情況甚至人口受災(zāi)變化等都能得到豐富的信息。
然而即使有了高清衛(wèi)星圖像,還是需要密集的人力來從圖像中識別出災(zāi)情:倒塌的建筑、垮塌的橋梁、臨時帳篷的位置和數(shù)量等等,都需要專家從圖像中識別出來。例如2010年海地大地震時,分析員手工查閱了太子港地區(qū)超過90000棟建筑的情況并進(jìn)行受災(zāi)評估,整個過程耗費(fèi)了專家團(tuán)隊(duì)幾個星期的時間。而最需要災(zāi)情信息的是震后48-72小時,需要豐富的災(zāi)情信息來進(jìn)行救災(zāi)決策和計(jì)劃制定,僅靠人類進(jìn)行大規(guī)模的災(zāi)情分析遠(yuǎn)遠(yuǎn)滿足不了應(yīng)急響應(yīng)的需求。
為了提高對于災(zāi)害應(yīng)急響應(yīng)能力,來自谷歌的研究人員構(gòu)建了一種基于卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行受損建筑物檢測的有效方法,將利用機(jī)器學(xué)習(xí)的方法自動檢測建筑物并評測損害程度。這一技術(shù)將有望提升災(zāi)后報告的生成速度,同時減少救災(zāi)部署的時間,幫助救災(zāi)團(tuán)隊(duì)按照輕重緩急的展開救援。下圖顯示了整套系統(tǒng)的數(shù)據(jù)處理流程。
具體方法
自動災(zāi)情評估的實(shí)現(xiàn)過程主要分為兩部分,分別是建筑物檢測和受損分類。研究人員利用目標(biāo)檢測方法來從衛(wèi)星圖像中檢測出每棟建筑物的區(qū)域。隨后抽取每棟建筑物區(qū)域?yàn)?zāi)前和災(zāi)后的圖像進(jìn)行處理,利用分類模型來分析建筑物是否受損。
分類模型由卷積神經(jīng)網(wǎng)網(wǎng)絡(luò)構(gòu)成,其輸入為災(zāi)前災(zāi)后兩張161x161像素的RGB圖像,對應(yīng)著地面上以建筑為中心50mx50m的區(qū)域。模型將分析兩張圖形的異同并輸出0.0-1.0之間的分?jǐn)?shù),其中0分代表建筑沒有損壞,1.0分代表建筑被自然災(zāi)害損壞了。
在針對兩幅輸入圖像的處理,研究人員提出了四種不同的模型架構(gòu),要么在前端對輸入圖像疊加輸入,要么分離獲取特征圖隨后再對其中的結(jié)果進(jìn)行處理。上述的四種結(jié)構(gòu)中CC代表了將災(zāi)前和災(zāi)后圖像疊加輸入,PO代表了只輸入災(zāi)后圖像,TTC代表了分別獲取災(zāi)前災(zāi)后圖像的特征圖而后疊加處理,TTS代表了將災(zāi)前災(zāi)后的特征圖進(jìn)行相減而后疊加處理。幾種結(jié)構(gòu)的性能如下圖所示,使用了TTS作為最終的架構(gòu)。
由于兩張圖像的拍攝時間和每天的日照時間不同,甚至由不同的衛(wèi)星拍攝,因此需要對圖像的顏色、光強(qiáng)和飽和度進(jìn)行矯正,對像素進(jìn)行對齊。為了校正顏色和光照的不同,研究人員利用直方圖均衡的方法來處理震前和震后的圖像。同時使用了標(biāo)準(zhǔn)的數(shù)據(jù)增強(qiáng)策略來使模型對于不同條件下的光照光強(qiáng)變得更為魯棒。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
6月20日立即下載>> 【白皮書】精準(zhǔn)測量 安全高效——福祿克光伏行業(yè)解決方案
-
7月3日立即報名>> 【在線會議】英飛凌新一代智能照明方案賦能綠色建筑與工業(yè)互聯(lián)
-
7月22-29日立即報名>> 【線下論壇】第三屆安富利汽車生態(tài)圈峰會
-
7.30-8.1火熱報名中>> 全數(shù)會2025(第六屆)機(jī)器人及智能工廠展
-
7月31日免費(fèi)預(yù)約>> OFweek 2025具身機(jī)器人動力電池技術(shù)應(yīng)用大會
-
免費(fèi)參會立即報名>> 7月30日- 8月1日 2025全數(shù)會工業(yè)芯片與傳感儀表展
推薦專題
- 1 AI 眼鏡讓百萬 APP「集體失業(yè)」?
- 2 大廠紛紛入局,百度、阿里、字節(jié)搶奪Agent話語權(quán)
- 3 深度報告|中國AI產(chǎn)業(yè)正在崛起成全球力量,市場潛力和關(guān)鍵挑戰(zhàn)有哪些?
- 4 上海跑出80億超級獨(dú)角獸:獲上市公司戰(zhàn)投,干人形機(jī)器人
- 5 國家數(shù)據(jù)局局長劉烈宏調(diào)研格創(chuàng)東智
- 6 下一代入口之戰(zhàn):大廠為何紛紛押注智能體?
- 7 百億AI芯片訂單,瘋狂傾銷中東?
- 8 Robotaxi新消息密集釋放,量產(chǎn)元年誰在領(lǐng)跑?
- 9 格斗大賽出圈!人形機(jī)器人致命短板曝光:頭腦過于簡單
- 10 一文看懂視覺語言動作模型(VLA)及其應(yīng)用