IJCA2019公開協(xié)調(diào)ADAS新方法:隨機(jī)對(duì)抗性模仿學(xué)習(xí)
2019年5月13日,國際人工智能聯(lián)合會(huì)議(IJCAI)2019發(fā)布了一篇題為Randomized Adversarial Imitation Learning的論文。該文介紹了一種基于自動(dòng)駕駛的隨機(jī)對(duì)抗性模仿學(xué)習(xí)(Randomized Adversarial Imitation Learning,RAIL)。該方法模擬了配備先進(jìn)傳感器的自動(dòng)駕駛汽車的協(xié)調(diào)過程,通過自由派生優(yōu)化決策系統(tǒng)進(jìn)而協(xié)調(diào)諸如智能巡航控制(SCC)和車道保持(LKS)等ADAS功能。值得一提的是,該方法在復(fù)雜的多車道高速公路和多智能體環(huán)境下,可以處理激光雷達(dá)數(shù)據(jù)并進(jìn)行決策。
在多車道高速公路環(huán)境中,安全事故往往會(huì)導(dǎo)致道路擁堵或發(fā)生更嚴(yán)重的交通事故,F(xiàn)代自動(dòng)駕駛中呈現(xiàn)的各種ADAS功能具有高度的相互依賴性,需要將其看成一個(gè)單一的綜合體,需要在保證安全的同時(shí),形成長期有效的輔助策略顯得尤為重要。本文介紹了一種基于自動(dòng)駕駛的隨機(jī)對(duì)抗性模仿學(xué)習(xí)(Randomized Adversarial Imitation Learning,RAIL)。該方法模擬了配備先進(jìn)傳感器的自動(dòng)駕駛汽車的協(xié)調(diào)過程,通過自由派生優(yōu)化決策系統(tǒng)進(jìn)而協(xié)調(diào)諸如智能巡航控制(SCC)和車道保持(LKS)等ADAS功能。值得一提的是,該方法在復(fù)雜的多車道高速公路和多智能體環(huán)境下,可以處理激光雷達(dá)數(shù)據(jù)并進(jìn)行決策。
基于自動(dòng)駕駛的隨機(jī)對(duì)抗性模仿學(xué)習(xí)(RAIL)法表明,在政策參數(shù)空間內(nèi)的隨機(jī)搜索可以適用于自動(dòng)駕駛政策的模仿學(xué)習(xí)。具體貢獻(xiàn)如下:
(1) 自駕駛機(jī)制是在模仿學(xué)習(xí)的啟發(fā)下提出的,RAIL方法可以成功地模擬專業(yè)駕駛表現(xiàn);相應(yīng)的靜態(tài)和線性策略可以以相近的速度完成多次換道和超車。
(2) 傳統(tǒng)的模擬學(xué)習(xí)方法對(duì)自動(dòng)駕駛的控制結(jié)構(gòu)復(fù)雜。相比而言,RAIL方法是基于無派生的隨機(jī)搜索,該方法更加簡單。
(3) RAIL方法開創(chuàng)了應(yīng)用于自主駕駛魯棒駕駛策略的學(xué)習(xí)先河。
圖1 車輛控制系統(tǒng)的簡化學(xué)習(xí)層次
先來看一下傳統(tǒng)的自動(dòng)駕駛汽車的系統(tǒng)層次結(jié)構(gòu)(如圖1),底層的ADAS控制器直接連接到無人駕駛汽車的激光雷達(dá)傳感器?刂破鞔_定控制車輛所需的信息,并將已經(jīng)決策好的操作傳遞給機(jī)械部件。作為一個(gè)單一的集成系統(tǒng),最好有多個(gè)ADAS功能同時(shí)協(xié)作來控制車輛的系統(tǒng)運(yùn)行。
研究動(dòng)機(jī):在多車道高速公路等有限條件下,主系統(tǒng)通過協(xié)調(diào)ADAS功能,實(shí)現(xiàn)汽車的自動(dòng)駕駛。由于車輛本身與周圍其他車輛、車道或者環(huán)境相互作用、互相交互,通過攝像頭或雷達(dá)等監(jiān)視器,主系統(tǒng)并不能獲取車輛周圍完整的環(huán)境狀態(tài),只能使用部分局部可見信息。因此,RAIL方法首先將監(jiān)測(cè)代理器建模為一個(gè)(O,A,T,R, γ)數(shù)組,該數(shù)組表示一個(gè)部分可見的馬爾可夫決策過程,其中包含對(duì)自動(dòng)駕駛的連續(xù)觀察和動(dòng)作,還有激光雷達(dá)數(shù)據(jù)的部分觀測(cè)狀態(tài),用O表示。
狀態(tài)空間:RAIL使用激光雷達(dá)傳感器發(fā)射的N條光束均勻地分布在視場(chǎng)上[wmin,wmax]獲取的數(shù)據(jù)完成矢量觀測(cè)。每個(gè)傳感器數(shù)據(jù)有最大范圍rmax,傳感器返回它遇到的第一個(gè)障礙物與車輛之間的距離,如果沒有檢測(cè)到障礙物,則返回rmax。然后,數(shù)值表示為O=(O1, . . . , ON)。進(jìn)而,根據(jù)距離數(shù)據(jù),可以計(jì)算出障礙物與車輛之間的相對(duì)速度Vr = (V1,…VN)。
操作空間:該策略是一個(gè)高層次的決策者,通過對(duì)高速公路的觀察來確定最優(yōu)的行動(dòng)。假設(shè)自動(dòng)駕駛汽車?yán)昧薃DAS功能,因此,驅(qū)動(dòng)策略的操作激活了每個(gè)ADAS功能。驅(qū)動(dòng)策略定義在離散的動(dòng)作空間。高層次決策可以分解為以下5個(gè)步驟:(1)保持當(dāng)前狀態(tài);(2)加速速度為velcur+velacc;(3)減速速度為velcur-veldec;(4)左轉(zhuǎn);(5)右轉(zhuǎn)。以上操作通過自動(dòng)緊急制動(dòng)(AEB)和自適應(yīng)巡航控制(ACC)完成。
圖2 RAIL結(jié)構(gòu)
RAIL主要是是增強(qiáng)傳統(tǒng)的ARS和GAIL算法。RAIL旨在培訓(xùn)駕駛決策,模仿專業(yè)司機(jī)的規(guī)范操作。汽車被認(rèn)為是一個(gè)代理策略πθ,在多車道高速公路上,車輛收集數(shù)據(jù)后生成小值隨機(jī)噪聲矩陣。該代理根據(jù)生成的噪聲策略與環(huán)境進(jìn)行多次交互,并將結(jié)果收集為樣本軌跡。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車】汽車E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 5 國產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?