如何使用Python和OpenCV實(shí)現(xiàn)對(duì)象檢測(cè)任務(wù)的數(shù)據(jù)擴(kuò)充過(guò)程?
def colorjitter(img, cj_type="b"):
'''
### Different Color Jitter ###
img: image
cj_type: {b: brightness, s: saturation, c: constast}
'''
if cj_type == "b":
# value = random.randint(-50, 50)
value = np.random.choice(np.a(chǎn)rray([-50, -40, -30, 30, 40, 50]))
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
if value >= 0:
lim = 255 - value
v[v > lim] = 255
v[v <= lim] += value
else:
lim = np.a(chǎn)bsolute(value)
v[v < lim] = 0
v[v >= lim] -= np.a(chǎn)bsolute(value)
final_h(yuǎn)sv = cv2.merge((h, s, v))
img = cv2.cvtColor(final_h(yuǎn)sv, cv2.COLOR_HSV2BGR)
return img
elif cj_type == "s":
# value = random.randint(-50, 50)
value = np.random.choice(np.a(chǎn)rray([-50, -40, -30, 30, 40, 50]))
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
if value >= 0:
lim = 255 - value
s[s > lim] = 255
s[s <= lim] += value
else:
lim = np.a(chǎn)bsolute(value)
s[s < lim] = 0
s[s >= lim] -= np.a(chǎn)bsolute(value)
final_h(yuǎn)sv = cv2.merge((h, s, v))
img = cv2.cvtColor(final_h(yuǎn)sv, cv2.COLOR_HSV2BGR)
return img
elif cj_type == "c":
brightness = 10
contrast = random.randint(40, 100)
dummy = np.int16(img)
dummy = dummy * (contrast/127+1) - contrast + brightness
dummy = np.clip(dummy, 0, 255)
img = np.uint8(dummy)
return img
添加噪聲通常,噪聲被認(rèn)為是圖像中不可預(yù)料的因素,然而,有幾種類型的噪聲(如高斯噪聲、椒鹽噪聲)可以用于數(shù)據(jù)擴(kuò)充,在深度學(xué)習(xí)中,添加噪聲是一種非常簡(jiǎn)單而有益的數(shù)據(jù)擴(kuò)充方法。在下面的例子中,為了增強(qiáng)數(shù)據(jù),將高斯噪聲和椒鹽噪聲添加到原始圖像中。
對(duì)于那些無(wú)法識(shí)別高斯噪聲和椒鹽噪聲區(qū)別的人,高斯噪聲的取值范圍取決于配置,從0到255,因此,在RGB圖像中,高斯噪聲像素可以是任何顏色。相反,椒鹽噪聲像素只能有兩個(gè)值:0或255,分別為黑色(椒)或白色(鹽)。def noisy(img, noise_type="gauss"):
'''
### Adding Noise ###
img: image
cj_type: {gauss: gaussian, sp: salt & pepper}
'''
if noise_type == "gauss":
image=img.copy()
mean=0
st=0.7
gauss = np.random.normal(mean,st,image.shape)
gauss = gauss.a(chǎn)stype('uint8')
image = cv2.a(chǎn)dd(image,gauss)
return image
elif noise_type == "sp":
image=img.copy()
prob = 0.05
if len(image.shape) == 2:
black = 0
white = 255
else:
colorspace = image.shape[2]
if colorspace == 3: # RGB
black = np.a(chǎn)rray([0, 0, 0], dtype='uint8')
white = np.a(chǎn)rray([255, 255, 255], dtype='uint8')
else: # RGBA
black = np.a(chǎn)rray([0, 0, 0, 255], dtype='uint8')
white = np.a(chǎn)rray([255, 255, 255, 255], dtype='uint8')
probs = np.random.random(image.shape[:2])
image[probs < (prob / 2)] = black
image[probs > 1 - (prob / 2)] = white
return image
過(guò)濾本文介紹的最后一個(gè)數(shù)據(jù)擴(kuò)充過(guò)程是過(guò)濾。與添加噪聲類似,過(guò)濾也很簡(jiǎn)單,易于實(shí)現(xiàn)。在實(shí)現(xiàn)中使用的三種濾波類型包括模糊(均值)、高斯和中值。
def filters(img, f_type = "blur"):
'''
### Filtering ###
img: image
f_type: {blur: blur, gaussian: gaussian, median: median}
'''
if f_type == "blur":
image=img.copy()
fsize = 9
return cv2.blur(image,(fsize,fsize))
elif f_type == "gaussian":
image=img.copy()
fsize = 9
return cv2.GaussianBlur(image, (fsize, fsize), 0)
elif f_type == "median":
image=img.copy()
fsize = 9
return cv2.medianBlur(image, fsize)
總結(jié)
在這篇文章中,主要向大家介紹了一個(gè)關(guān)于對(duì)象檢測(cè)任務(wù)中數(shù)據(jù)擴(kuò)充實(shí)現(xiàn)的教程。你們可以在這里找到完整實(shí)現(xiàn)。https://github.com/tranleanh/data-augmentation

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車】汽車E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 5 國(guó)產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來(lái)商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽(yáng)光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長(zhǎng)空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營(yíng)收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?