谷歌提出Context R-CNN, 利用時(shí)域上下文信息的增強(qiáng)目標(biāo)檢測(cè)系統(tǒng)
生態(tài)問(wèn)題刻不容緩的今天,有效的生態(tài)系統(tǒng)監(jiān)測(cè)能夠幫助研究人員更好地提出環(huán)境保護(hù)措施。靜態(tài)捕捉相機(jī)就是放置在野外環(huán)境中的最具代表性的一種監(jiān)測(cè)傳感器。然而,對(duì)于廣泛應(yīng)用的靜態(tài)相機(jī)來(lái)說(shuō),自動(dòng)地分析處理還面臨著一系列的挑戰(zhàn)。
由于靜態(tài)相機(jī)的拍攝場(chǎng)景固定,拍攝圖像中的背景異常重復(fù),因此沒(méi)有足夠充分的數(shù)據(jù)多樣性,機(jī)器學(xué)習(xí)模型將傾向于學(xué)習(xí)背景,使其在新場(chǎng)景下缺乏足夠的泛化性。為了解決這一問(wèn)題,來(lái)自谷歌的研究人員提出了一種基于時(shí)域上下文的互補(bǔ)方法Context R-CNN,提升了目標(biāo)檢測(cè)模型在全新相機(jī)設(shè)置場(chǎng)景下的泛化性。
有效的生態(tài)系統(tǒng)監(jiān)測(cè)將幫助研究人員更好的理解全球生態(tài)系統(tǒng)的動(dòng)力學(xué)行為、物種多樣性、量化人類活動(dòng)和氣候變化的影響,并提出有效的保護(hù)措施。為了獲取高質(zhì)量的數(shù)據(jù)提高監(jiān)測(cè)效率,生態(tài)學(xué)家耗費(fèi)了大量的努力在野外環(huán)境中放置檢測(cè)傳感器,而靜態(tài)捕捉相機(jī)就是其中最具代表性的一種。
隨著傳感器監(jiān)測(cè)網(wǎng)絡(luò)的逐漸發(fā)展壯大,對(duì)于全球范圍內(nèi)生物多樣性數(shù)據(jù)的手工分析變成了全球?qū)崟r(shí)生態(tài)精確監(jiān)測(cè)的瓶頸所在。雖然有多種基于機(jī)器學(xué)習(xí)的自動(dòng)化分析方法,但對(duì)于廣泛應(yīng)用的靜態(tài)相機(jī)來(lái)說(shuō),自動(dòng)地分析處理還面臨著一系列的挑戰(zhàn),包括功耗和存儲(chǔ)限制、采樣率較低、運(yùn)動(dòng)觸發(fā)造成的非規(guī)則拍攝結(jié)果等。
為了有效處理野外靜態(tài)相機(jī)的拍攝結(jié)果,計(jì)算機(jī)視覺(jué)模型必須對(duì)各種情形下的目標(biāo)具有足夠的魯棒性,包括偏離中心、離焦、低光照、尺度變化劇烈等等。此外靜態(tài)相機(jī)最大的不同在于它的拍攝場(chǎng)景固定,這會(huì)使拍攝圖像中的背景異常重復(fù)。沒(méi)有足夠充分的數(shù)據(jù)多樣性,機(jī)器學(xué)習(xí)模型將傾向于學(xué)習(xí)背景,使其在新場(chǎng)景下缺乏足夠的泛化性。
機(jī)器學(xué)習(xí)和生態(tài)學(xué)界的研究人員已經(jīng)攜手完成了像LILA BC 和 Wildlife Insights 等大規(guī)模的專家標(biāo)注數(shù)據(jù)集,這些數(shù)據(jù)來(lái)自于多個(gè)研究團(tuán)隊(duì)在不同場(chǎng)景下的相機(jī)拍攝結(jié)果以提升數(shù)據(jù)的多樣性。但數(shù)據(jù)的積攢需要大量人力物力并且進(jìn)展緩慢,同時(shí)在顧及多樣性、世界范圍內(nèi)代表性數(shù)據(jù)和物種分類的要求下變得異常繁雜。
這張清晨濃霧中的野外圖像幾乎什么都看不清,為自動(dòng)分析帶來(lái)了十分巨大的挑戰(zhàn)。
為了解決這一問(wèn)題,來(lái)自谷歌的研究人員提出了一種基于時(shí)域上下文的互補(bǔ)方法Context R-CNN,提升了目標(biāo)檢測(cè)模型在全新相機(jī)設(shè)置場(chǎng)景下的泛化性。新型的目標(biāo)檢測(cè)架構(gòu)通過(guò)提取每個(gè)相機(jī)在時(shí)間維度上的上下文線索來(lái)改善新場(chǎng)景下的目標(biāo)識(shí)別效果,而無(wú)需額外的來(lái)自多個(gè)相機(jī)的訓(xùn)練數(shù)據(jù)。在面對(duì)復(fù)雜圖像時(shí),上下文R-CNN方法可以從同一相機(jī)從長(zhǎng)達(dá)一個(gè)月的上下文信息中回溯出最為相關(guān)的目標(biāo)并幫助算法進(jìn)行識(shí)別。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
-
機(jī)器人奧運(yùn)會(huì)戰(zhàn)報(bào):宇樹(shù)機(jī)器人摘下首金,天工Ultra搶走首位“百米飛人”
-
存儲(chǔ)圈掐架!江波龍起訴佰維,索賠121萬(wàn)
-
長(zhǎng)安汽車母公司突然更名:從“中國(guó)長(zhǎng)安”到“辰致科技”
-
豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
-
字節(jié)AI Lab負(fù)責(zé)人李航卸任后返聘,Seed進(jìn)入調(diào)整期
-
員工持股爆雷?廣汽埃安緊急回應(yīng)
-
中國(guó)“智造”背后的「關(guān)鍵力量」
-
小米汽車研發(fā)中心重磅落地,寶馬家門口“搶人”
最新活動(dòng)更多
-
即日-9.16點(diǎn)擊進(jìn)入 >> 【限時(shí)福利】TE 2025國(guó)際物聯(lián)網(wǎng)展·深圳站
-
10月23日火熱報(bào)名中>> 2025是德科技創(chuàng)新技術(shù)峰會(huì)
-
10月23日立即報(bào)名>> Works With 開(kāi)發(fā)者大會(huì)深圳站
-
10月24日立即參評(píng)>> 【評(píng)選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評(píng)選
-
11月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
12月18日立即報(bào)名>> 【線下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
推薦專題
- 1 先進(jìn)算力新選擇 | 2025華為算力場(chǎng)景發(fā)布會(huì)暨北京xPN伙伴大會(huì)成功舉辦
- 2 人形機(jī)器人,正狂奔在批量交付的曠野
- 3 宇樹(shù)機(jī)器人撞人事件的深度剖析:六維力傳感器如何成為人機(jī)安全的關(guān)鍵屏障
- 4 解碼特斯拉新AI芯片戰(zhàn)略 :從Dojo到AI5和AI6推理引擎
- 5 AI版“四萬(wàn)億刺激”計(jì)劃來(lái)了
- 6 2025年8月人工智能投融資觀察
- 7 8 a16z最新AI百?gòu)?qiáng)榜:硅谷頂級(jí)VC帶你讀懂全球生成式AI賽道最新趨勢(shì)
- 9 Manus跑路,大廠掉線,只能靠DeepSeek了
- 10 地平線的野心:1000萬(wàn)套HSD上車