谷歌提出Context R-CNN, 利用時(shí)域上下文信息的增強(qiáng)目標(biāo)檢測(cè)系統(tǒng)
生態(tài)問(wèn)題刻不容緩的今天,有效的生態(tài)系統(tǒng)監(jiān)測(cè)能夠幫助研究人員更好地提出環(huán)境保護(hù)措施。靜態(tài)捕捉相機(jī)就是放置在野外環(huán)境中的最具代表性的一種監(jiān)測(cè)傳感器。然而,對(duì)于廣泛應(yīng)用的靜態(tài)相機(jī)來(lái)說(shuō),自動(dòng)地分析處理還面臨著一系列的挑戰(zhàn)。
由于靜態(tài)相機(jī)的拍攝場(chǎng)景固定,拍攝圖像中的背景異常重復(fù),因此沒(méi)有足夠充分的數(shù)據(jù)多樣性,機(jī)器學(xué)習(xí)模型將傾向于學(xué)習(xí)背景,使其在新場(chǎng)景下缺乏足夠的泛化性。為了解決這一問(wèn)題,來(lái)自谷歌的研究人員提出了一種基于時(shí)域上下文的互補(bǔ)方法Context R-CNN,提升了目標(biāo)檢測(cè)模型在全新相機(jī)設(shè)置場(chǎng)景下的泛化性。
有效的生態(tài)系統(tǒng)監(jiān)測(cè)將幫助研究人員更好的理解全球生態(tài)系統(tǒng)的動(dòng)力學(xué)行為、物種多樣性、量化人類活動(dòng)和氣候變化的影響,并提出有效的保護(hù)措施。為了獲取高質(zhì)量的數(shù)據(jù)提高監(jiān)測(cè)效率,生態(tài)學(xué)家耗費(fèi)了大量的努力在野外環(huán)境中放置檢測(cè)傳感器,而靜態(tài)捕捉相機(jī)就是其中最具代表性的一種。
隨著傳感器監(jiān)測(cè)網(wǎng)絡(luò)的逐漸發(fā)展壯大,對(duì)于全球范圍內(nèi)生物多樣性數(shù)據(jù)的手工分析變成了全球?qū)崟r(shí)生態(tài)精確監(jiān)測(cè)的瓶頸所在。雖然有多種基于機(jī)器學(xué)習(xí)的自動(dòng)化分析方法,但對(duì)于廣泛應(yīng)用的靜態(tài)相機(jī)來(lái)說(shuō),自動(dòng)地分析處理還面臨著一系列的挑戰(zhàn),包括功耗和存儲(chǔ)限制、采樣率較低、運(yùn)動(dòng)觸發(fā)造成的非規(guī)則拍攝結(jié)果等。
為了有效處理野外靜態(tài)相機(jī)的拍攝結(jié)果,計(jì)算機(jī)視覺(jué)模型必須對(duì)各種情形下的目標(biāo)具有足夠的魯棒性,包括偏離中心、離焦、低光照、尺度變化劇烈等等。此外靜態(tài)相機(jī)最大的不同在于它的拍攝場(chǎng)景固定,這會(huì)使拍攝圖像中的背景異常重復(fù)。沒(méi)有足夠充分的數(shù)據(jù)多樣性,機(jī)器學(xué)習(xí)模型將傾向于學(xué)習(xí)背景,使其在新場(chǎng)景下缺乏足夠的泛化性。
機(jī)器學(xué)習(xí)和生態(tài)學(xué)界的研究人員已經(jīng)攜手完成了像LILA BC 和 Wildlife Insights 等大規(guī)模的專家標(biāo)注數(shù)據(jù)集,這些數(shù)據(jù)來(lái)自于多個(gè)研究團(tuán)隊(duì)在不同場(chǎng)景下的相機(jī)拍攝結(jié)果以提升數(shù)據(jù)的多樣性。但數(shù)據(jù)的積攢需要大量人力物力并且進(jìn)展緩慢,同時(shí)在顧及多樣性、世界范圍內(nèi)代表性數(shù)據(jù)和物種分類的要求下變得異常繁雜。
這張清晨濃霧中的野外圖像幾乎什么都看不清,為自動(dòng)分析帶來(lái)了十分巨大的挑戰(zhàn)。
為了解決這一問(wèn)題,來(lái)自谷歌的研究人員提出了一種基于時(shí)域上下文的互補(bǔ)方法Context R-CNN,提升了目標(biāo)檢測(cè)模型在全新相機(jī)設(shè)置場(chǎng)景下的泛化性。新型的目標(biāo)檢測(cè)架構(gòu)通過(guò)提取每個(gè)相機(jī)在時(shí)間維度上的上下文線索來(lái)改善新場(chǎng)景下的目標(biāo)識(shí)別效果,而無(wú)需額外的來(lái)自多個(gè)相機(jī)的訓(xùn)練數(shù)據(jù)。在面對(duì)復(fù)雜圖像時(shí),上下文R-CNN方法可以從同一相機(jī)從長(zhǎng)達(dá)一個(gè)月的上下文信息中回溯出最為相關(guān)的目標(biāo)并幫助算法進(jìn)行識(shí)別。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車】汽車E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書(shū)】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開(kāi)始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 5 國(guó)產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來(lái)商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽(yáng)光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開(kāi)成長(zhǎng)空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營(yíng)收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?