訂閱
糾錯(cuò)
加入自媒體

CCF最新分享:數(shù)據(jù)隱私保護(hù)下,AI大數(shù)據(jù)應(yīng)如何發(fā)展?

3月24日,由CCF主辦,微眾銀行及深圳大學(xué)微眾金融科技研究院協(xié)辦的“CCFTF14期研討會(huì)”在深圳大學(xué)舉辦,此次會(huì)議的主題為“聯(lián)邦學(xué)習(xí)技術(shù)及數(shù)據(jù)隱私保護(hù)”。

隨著國(guó)際國(guó)內(nèi)數(shù)據(jù)隱私保護(hù)成為新趨勢(shì),數(shù)據(jù)共享變得更加困難,如何在保護(hù)數(shù)據(jù)隱私前提下開(kāi)展AI大數(shù)據(jù)研究?“聯(lián)邦學(xué)習(xí)”可以打破“數(shù)據(jù)孤島”具體應(yīng)用在AI領(lǐng)域。聚焦“聯(lián)邦學(xué)習(xí)技術(shù)及數(shù)據(jù)隱私保護(hù)”,CCFTF 14期研討會(huì)邀請(qǐng)國(guó)際人工智能學(xué)會(huì)理事長(zhǎng)、微眾銀行首席人工智能官楊強(qiáng)、南洋理工大學(xué)于涵教授、微眾銀行人工智能部高級(jí)研究員劉洋、京東城市計(jì)算事業(yè)部AI平臺(tái)部負(fù)責(zé)人張鈞波、北京觀韜中茂(上海)律師事務(wù)所合伙人王渝偉、第四范式聯(lián)合創(chuàng)始人、首席研究科學(xué)家陳雨強(qiáng)、微眾銀行人工智能部副總經(jīng)理陳天健與大家現(xiàn)場(chǎng)互動(dòng)交流。

AI大數(shù)據(jù)面臨挑戰(zhàn),技術(shù)向善與遷移學(xué)習(xí)

我們知道,AI與各行業(yè)緊密結(jié)合,必將顯著改善社會(huì)生活,這是一種比較理想的狀態(tài),然而現(xiàn)實(shí)是AI系統(tǒng)仍有許多不盡如人意的地方。另外,社會(huì)對(duì)隱私保護(hù)和數(shù)據(jù)安全提出了更高的要求,這也給大數(shù)據(jù)研究及共享提出了新的挑戰(zhàn)。

競(jìng)爭(zhēng)、安全及數(shù)據(jù)壁壘等因素造成所謂的“數(shù)據(jù)孤島”問(wèn)題。在此背景下,遷移學(xué)習(xí)幫助更多領(lǐng)域建模,就像在數(shù)據(jù)集之間建立朋友圈,數(shù)據(jù)孤島問(wèn)題得到有效解決。

AI向善與系統(tǒng)短板

AI向善,它能在普惠金融、普惠教育、普惠醫(yī)療、智慧城市、災(zāi)難營(yíng)救、扶貧及農(nóng)業(yè)等領(lǐng)域發(fā)揮重要作用。

楊強(qiáng)教授表示:“AI向善(AI for good),這在國(guó)外很早就被提出來(lái)的概念。這個(gè)概念不僅僅是計(jì)算機(jī)領(lǐng)域的發(fā)展,也是社會(huì)的需求,最近大家比較關(guān)心的一個(gè)議題就是AI和社會(huì)的結(jié)合。AI作為一種工具,就像以前互聯(lián)網(wǎng)作為一種工具,加上一些傳統(tǒng)的只能少數(shù)人享受的領(lǐng)域,然后通過(guò)AI的手段對(duì)廣大的社會(huì)傳播,能夠讓普通人也能享受過(guò)去VIP享受的那一些特殊服務(wù),包括金融,所以這樣就產(chǎn)生了AI和普惠金融;AI和普惠教育,例如大學(xué)的高等教育,能不能讓所有人都能享受到。另外還有AI和普惠醫(yī)療、智慧城市、災(zāi)難營(yíng)救,AI扶貧和農(nóng)業(yè)等方面!

AI若能與各行業(yè)緊密結(jié)合,必將顯著改善社會(huì)生活,這是一種比較理想的狀態(tài),然而現(xiàn)實(shí)是AI系統(tǒng)仍有許多不盡如人意的地方,例如AI系統(tǒng)的有偏性和AI系統(tǒng)與人類(lèi)合作方面的問(wèn)題。

“AI系統(tǒng)有偏性,根據(jù)我們交給AI系統(tǒng)的數(shù)據(jù),AI系統(tǒng)可以建立模型,但如果這個(gè)數(shù)據(jù)是有偏的,那么這個(gè)模型就會(huì)有偏性。另一個(gè)是AI系統(tǒng)和人類(lèi)合作的問(wèn)題,最近一個(gè)很大的事情是波音飛機(jī)自動(dòng)駕駛系統(tǒng)和人類(lèi)飛行員搶奪控制權(quán),不幸的是系統(tǒng)贏了,導(dǎo)致飛機(jī)墜毀,現(xiàn)在波音飛機(jī)停飛。這給我們一個(gè)很大的啟示,自動(dòng)系統(tǒng)如果不能和人類(lèi)有一個(gè)很好的交互,沒(méi)有以人為中心的設(shè)計(jì),這個(gè)系統(tǒng)會(huì)是一個(gè)災(zāi)難!睏顝(qiáng)教授表示。

遷移學(xué)習(xí)解決“數(shù)據(jù)孤島”問(wèn)題

目前,除AI系統(tǒng)自身的一些問(wèn)題外,重視隱私保護(hù)和數(shù)據(jù)安全的新趨勢(shì)也給數(shù)據(jù)研究及共享帶來(lái)新的挑戰(zhàn)。

近年來(lái),國(guó)際國(guó)內(nèi)對(duì)于隱私保護(hù)和數(shù)據(jù)安全的重視已成為重要趨勢(shì)。歐盟去年5月通過(guò)最新法案《通用數(shù)據(jù)保護(hù)條例》(General Data Protection Regulation, GDPR),對(duì)數(shù)據(jù)保護(hù)采取更嚴(yán)格的態(tài)度。同時(shí),我國(guó)也在緊跟這些領(lǐng)域的法律和規(guī)范,自2017年《網(wǎng)絡(luò)安全法》通過(guò)以后,目前我國(guó)個(gè)人信息保護(hù)法已納入立法規(guī)劃,有望在2020年通過(guò),這些都反映出數(shù)據(jù)保護(hù)與隱私安全越來(lái)越受到重視。

隨著隱私保護(hù)和重視數(shù)據(jù)安全成為新趨勢(shì),數(shù)據(jù)研究及共享面臨更多問(wèn)題。首先,由于競(jìng)爭(zhēng)關(guān)系、安全問(wèn)題、審批流程等因素,數(shù)據(jù)共享難度高。其次,數(shù)據(jù)在不同擁有方、云和端以及物聯(lián)網(wǎng)節(jié)點(diǎn)之間的流通存在著難以打破的壁壘,形成所謂的“數(shù)據(jù)孤島”問(wèn)題。此外,即便不同行業(yè)之間有意愿交換數(shù)據(jù),也可能遭遇政策問(wèn)責(zé)和競(jìng)爭(zhēng)保護(hù),AI的大數(shù)據(jù)面臨重重挑戰(zhàn)。

雖然AI的大數(shù)據(jù)面臨重重挑戰(zhàn),但數(shù)據(jù)孤島并非不可解決!斑w移學(xué)習(xí)就是很好的解決方案。遷移學(xué)習(xí)是用一個(gè)成熟領(lǐng)域的數(shù)據(jù)和模型,通過(guò)知識(shí)遷移,幫助完成一個(gè)小數(shù)據(jù)建模。這樣通過(guò)關(guān)聯(lián)領(lǐng)域間的相似性,幫助更多領(lǐng)域建模,這就像在數(shù)據(jù)集之間建立朋友圈,數(shù)據(jù)孤島也能得到有效解決!睏顝(qiáng)教授表示。

數(shù)據(jù)共享與安全,聯(lián)邦學(xué)習(xí)的優(yōu)越性

此外,解決數(shù)據(jù)壁壘、“數(shù)據(jù)孤島”等問(wèn)題的方法除遷移學(xué)習(xí)外,還有一個(gè)重要方法——“聯(lián)邦學(xué)習(xí)”。

谷歌公司率先提出了基于個(gè)人終端設(shè)備的“聯(lián)邦學(xué)習(xí)” (Federated Learning)算法框架!奥(lián)邦機(jī)器學(xué)習(xí)”(Federated Machine Learning)實(shí)際上是一種加密的分布式機(jī)器學(xué)習(xí)技術(shù),參與各方可以在不披露底層數(shù)據(jù)和底層數(shù)據(jù)的加密(混淆)形態(tài)的前提下共建模型。它可以實(shí)現(xiàn)各個(gè)企業(yè)的自有數(shù)據(jù)不出本地,通過(guò)加密機(jī)制下的參數(shù)交換方式,就能在不違反數(shù)據(jù)隱私法規(guī)情況下,建立一個(gè)虛擬的共有模型。在這樣一個(gè)機(jī)制下,參與各方的身份和地位相同,成功實(shí)現(xiàn)了打通“數(shù)據(jù)孤島”走向“共同發(fā)展”的目標(biāo)。

聯(lián)邦學(xué)習(xí)分為橫向聯(lián)邦和縱向聯(lián)邦,橫向聯(lián)邦數(shù)據(jù)方特征維度相同,縱向聯(lián)邦數(shù)據(jù)方樣本ID相同。縱向聯(lián)邦學(xué)習(xí)的目標(biāo)是A方與B方聯(lián)合建立模型,并且假設(shè)只有一方有標(biāo)簽Y,兩方均不暴露數(shù)據(jù),但可能遇到的挑戰(zhàn)是只有X的一方?jīng)]有辦法建立模型,雙方不能交換共享數(shù)據(jù),最終要達(dá)到的預(yù)期為雙方俊獲得數(shù)據(jù)保護(hù)且模型無(wú)損失。

“通過(guò)縱向聯(lián)邦學(xué)習(xí),各方在隱私保護(hù)下進(jìn)行樣本ID匹配,每個(gè)參與方并不知道另一方的數(shù)據(jù)和特征,每個(gè)參與方只得到自己的自己側(cè)的模型參數(shù)(半?yún)?shù)),即滿足隱私保護(hù)的要求,又滿足數(shù)據(jù)遷移學(xué)習(xí)的目標(biāo)。聯(lián)邦學(xué)習(xí)希望在安全合規(guī)的基礎(chǔ)上達(dá)到防御攻擊、提高算法效率的目標(biāo)!眲⒀蟛┦勘硎。

基于此,微眾銀行AI團(tuán)隊(duì)提出了基于“聯(lián)邦學(xué)習(xí)”的系統(tǒng)性的通用解決方案,可以解決個(gè)人(to C)和公司間(to B)聯(lián)合建模的問(wèn)題。此前,微眾銀行在城市管理的視覺(jué)應(yīng)用方面,與極視角聯(lián)合推出了聯(lián)邦視覺(jué)項(xiàng)目。

“傳統(tǒng)城市管理面臨標(biāo)簽數(shù)量少、數(shù)據(jù)分散,集中管理成本很高且模型更新和反饋存在離線延遲情況,聯(lián)邦視覺(jué)項(xiàng)目通過(guò)聯(lián)邦學(xué)習(xí)對(duì)模型提升率為15%,且模型效果無(wú)損失,這是聯(lián)邦學(xué)習(xí)應(yīng)用在物聯(lián)網(wǎng)領(lǐng)域的一大優(yōu)勢(shì)! 劉洋表示。

物聯(lián)網(wǎng)(IoT)是基于互聯(lián)網(wǎng)、傳統(tǒng)電信網(wǎng)等信息傳輸渠道,讓所有具備通信功能的獨(dú)立物體實(shí)現(xiàn)互聯(lián)互通的網(wǎng)絡(luò)。物聯(lián)網(wǎng)的應(yīng)用之一,是透過(guò)收集多個(gè)節(jié)點(diǎn)的小數(shù)據(jù),聚集成大數(shù)據(jù)來(lái)建立應(yīng)用模型。

而邊緣計(jì)算(Edge Computing)則致力于通過(guò)依靠集網(wǎng)絡(luò)、計(jì)算、存儲(chǔ)、應(yīng)用核心能力為一體的開(kāi)放平臺(tái),就近提供最近端服務(wù),從而產(chǎn)生更快的網(wǎng)絡(luò)服務(wù)響應(yīng),滿足不同行業(yè)的實(shí)時(shí)業(yè)務(wù)需求。

物聯(lián)網(wǎng)、邊緣計(jì)算和與人工智能 (AI) 的有機(jī)結(jié)合離不開(kāi)分布式大數(shù)據(jù)的安全、合法的管理,聯(lián)邦學(xué)習(xí)助力IoT,實(shí)現(xiàn)大規(guī)模用戶在保護(hù)數(shù)據(jù)隱私下的協(xié)同學(xué)習(xí)。

1  2  下一頁(yè)>  
聲明: 本文系OFweek根據(jù)授權(quán)轉(zhuǎn)載自其它媒體或授權(quán)刊載,目的在于信息傳遞,并不代表本站贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),如有新聞稿件和圖片作品的內(nèi)容、版權(quán)以及其它問(wèn)題的,請(qǐng)聯(lián)系我們。

發(fā)表評(píng)論

0條評(píng)論,0人參與

請(qǐng)輸入評(píng)論內(nèi)容...

請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字

您提交的評(píng)論過(guò)于頻繁,請(qǐng)輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無(wú)評(píng)論

暫無(wú)評(píng)論

    掃碼關(guān)注公眾號(hào)
    OFweek人工智能網(wǎng)
    獲取更多精彩內(nèi)容
    文章糾錯(cuò)
    x
    *文字標(biāo)題:
    *糾錯(cuò)內(nèi)容:
    聯(lián)系郵箱:
    *驗(yàn) 證 碼:

    粵公網(wǎng)安備 44030502002758號(hào)