對(duì)于醫(yī)療人工智能企業(yè)算力問(wèn)題,英偉達(dá)打出關(guān)鍵一招
對(duì)于人工智能企業(yè),算力從來(lái)不是一項(xiàng)廉價(jià)的成本。作為算法推進(jìn)的動(dòng)力源泉,如何合理利用算力,提升算法迭代速度成為初創(chuàng)公司不可回避的問(wèn)題。
雖然NVIDIA已經(jīng)為了加速算法運(yùn)行推出了適用于不同場(chǎng)景的人工智能芯片,但隨著數(shù)據(jù)指數(shù)式的上升,從影像到細(xì)胞學(xué)再到基因組學(xué),醫(yī)學(xué)人工智能企業(yè)很難找準(zhǔn)一個(gè)合適的定位去選擇能普適于全流程開(kāi)發(fā)的芯片。
近日,在北京開(kāi)幕的Emtech China 2019全球新興科技峰會(huì)上,NVIDIA副總裁Kimberly Powell做出了以人工智能發(fā)展的為主題的演講,在探討了各行業(yè)AI發(fā)展的同時(shí),也談到了NVIDIA在醫(yī)療領(lǐng)域的算力解決方案。
英偉達(dá)副總裁Kimberly Powell
數(shù)據(jù)、算力、應(yīng)用場(chǎng)景,企業(yè)在不斷利用AI推陳出新
醫(yī)學(xué)人工智能從發(fā)展的開(kāi)端便依賴(lài)多樣的工具,以收集人體之中的健康數(shù)據(jù)。2017年,英偉達(dá)通過(guò)一臺(tái)特定的機(jī)器結(jié)合全新的探測(cè)技術(shù)在原子層面上記錄蛋白質(zhì)數(shù)據(jù),每一天可以收集到多達(dá)3T的蛋白質(zhì)數(shù)據(jù),而基因數(shù)據(jù)的體量遠(yuǎn)在此之上。
收據(jù)數(shù)據(jù)的過(guò)程不斷在進(jìn)行,但處理這些數(shù)據(jù)卻異常困難。Kimberly Powell用“混沌”一詞描述了現(xiàn)有數(shù)據(jù)的雜亂程度,她認(rèn)為在這樣的情況之下,我們必須用AI來(lái)解決這些計(jì)算問(wèn)題。
NVIDIA的三大合作伙伴通用電器、佳能與西門(mén)子早已在這一方面獲取豐富的研究成果。
Kimberly Powell向動(dòng)脈網(wǎng)記者講解了這些巨頭如何用于AI去優(yōu)化器械成像:Canna針對(duì)于CT開(kāi)發(fā)出了一個(gè)AI實(shí)時(shí)算法,幫助CT縮短成像的時(shí)間,并生成更多更加安全、更加準(zhǔn)確的實(shí)時(shí)圖像。
GE的硬件革新同樣重要:如果說(shuō)出現(xiàn)了顱內(nèi)出血,這時(shí)通用電氣的機(jī)器就可以幫助放射科的醫(yī)生重新安排自己的工作流程,重新確定工作的優(yōu)先等級(jí)。根據(jù)患者癥狀的嚴(yán)重性,機(jī)器可以重新安排工作順序供醫(yī)生參考。
西門(mén)子也在AI領(lǐng)域擁有很多技術(shù)突破,他們發(fā)布了一個(gè)非常安全以及標(biāo)準(zhǔn)的人體測(cè)量平臺(tái)?梢詫I使用到CT掃描當(dāng)中,結(jié)合其平臺(tái)的知識(shí)圖譜為患者給出診斷一件。
除了這些器械巨頭,創(chuàng)業(yè)公司們也在為自己挖掘一些全新的工作,并運(yùn)用AI技術(shù)去解決這些問(wèn)題。
基因組研究與新藥研發(fā)是AI在非醫(yī)學(xué)影像領(lǐng)域的重要運(yùn)用,Toptom運(yùn)用AI將七萬(wàn)兩千種蛋白質(zhì)進(jìn)行了比較,觀察蛋白質(zhì)之間相互的互動(dòng)是什么樣子的,他們還有一個(gè)GANs深度學(xué)習(xí)的技術(shù),可以幫助研發(fā)人員創(chuàng)造化合物,且至今已經(jīng)創(chuàng)造出了五千種化合物。
同時(shí),人工智能技術(shù)可以使用計(jì)算機(jī)視覺(jué)以及排查技術(shù)充分了解細(xì)胞當(dāng)中的化合物,以及它們之間的相互關(guān)系,嘗試了解新藥開(kāi)發(fā)當(dāng)中的一些晶體是如何開(kāi)發(fā)出來(lái)的。
Clara平臺(tái)不僅僅為企業(yè)提供云端算力
上述高性能計(jì)算以及人工智能技術(shù)離不開(kāi)算力的支持,在2018年的北美放射性學(xué)會(huì)(RSNA)之上,英偉達(dá)推出了Clara醫(yī)療影像超算平臺(tái),試圖為所有醫(yī)療影像提供統(tǒng)一支持服務(wù)。
Clara SDK為醫(yī)學(xué)應(yīng)用程序開(kāi)發(fā)者提供一套用于計(jì)算、高級(jí)可視化和AI的GPU加速庫(kù)。隨著Clara SDK的發(fā)展變化,我們還將提供可用于構(gòu)建硬件抽象應(yīng)用程序的容器。這些容器可對(duì)醫(yī)學(xué)影像進(jìn)行重建、圖像處理、分割、分類(lèi)和3D渲染。
通過(guò)在GPU上利用Docker和NVIDIA的Kubernetes,開(kāi)發(fā)者可以在多個(gè)計(jì)算環(huán)境(包括嵌入式、預(yù)置式或云端)中部署應(yīng)用程序。
當(dāng)涉及治療和診斷時(shí),放射科醫(yī)生通常需要花費(fèi)數(shù)小時(shí)仔細(xì)檢查一張患者的3D圖像。這是一個(gè)枯燥乏味的過(guò)程,放射科醫(yī)生必須逐個(gè)切片查看CT或MRI掃描圖像,手工繪制、注釋和修正他們關(guān)注的器官或異常情況,然后對(duì)特定的器官或異常情況的所有3D圖像切片重復(fù)這一步驟。
NVIDIA的AI輔助注釋SDK能夠以10倍的速度大大加快此過(guò)程,并有助于更快地發(fā)現(xiàn)異常情況。這是通過(guò)使應(yīng)用程序開(kāi)發(fā)者和數(shù)據(jù)科學(xué)家將AI輔助注釋SDK集成至他們現(xiàn)有的應(yīng)用程序中,并將AI輔助工作流程用于放射線照相得以實(shí)現(xiàn)。
AI輔助注釋SDK利用NVIDIA的遷移學(xué)習(xí)工具包不斷自我學(xué)習(xí),所以每個(gè)添加注釋的新圖像都可以用作訓(xùn)練數(shù)據(jù),進(jìn)一步提高所提供的預(yù)訓(xùn)練深度學(xué)習(xí)模型的精確度。
“我們可以獲得NVIDIA的AI輔助注釋技術(shù),并在幾天的時(shí)間內(nèi)將其集成至我們的圖像瀏覽器!盡GH&BWH Center for Clinical Data Science的執(zhí)行董事Mark Michalski說(shuō),“我們目前需 要注釋大量的圖像——有時(shí)一天大約一千張或更多,所以任何有助于自動(dòng)執(zhí)行此過(guò)程的技術(shù)都可能極大地減少注釋時(shí)間和成本。我們非常激動(dòng)可以利用AI輔助工作流程并與NVIDIA共同解決這些至關(guān)重要的醫(yī)學(xué)影像問(wèn)題!
對(duì)于Clara在中國(guó)的運(yùn)用狀況,Kimberly Powell介紹道:“同樣的一套軟件既可以在醫(yī)院本地運(yùn)行,也可以在云端運(yùn)行,對(duì)于中國(guó)市場(chǎng)而言,我認(rèn)為這樣一種混合的運(yùn)營(yíng)環(huán)境的支撐是非常有優(yōu)勢(shì)的,因?yàn)槲覀冎揽赡茉谥袊?guó)的一些比較偏遠(yuǎn)的省份或者農(nóng)村地區(qū),他們網(wǎng)絡(luò)條件不好,無(wú)法獲得這樣的云服務(wù),他們可以選擇在本地執(zhí)行;但是對(duì)于那些大城市的醫(yī)院,他們擁有良好的硬件設(shè)備,則可以選擇云端運(yùn)行的方式運(yùn)行!
不止于是云平臺(tái),在算力層次,我們可以做的還很多
這樣的模式早已應(yīng)用于游戲、自動(dòng)駕駛領(lǐng)域,醫(yī)療領(lǐng)域的運(yùn)用將會(huì)越來(lái)越復(fù)雜。除了Clara平臺(tái)這樣的云端方式外,還有一些企業(yè)選擇的運(yùn)用其他手段為自己的項(xiàng)目布置算力。
以消化內(nèi)鏡、超聲等領(lǐng)域?yàn)檠芯糠较虻南J袭悩?gòu)為了更好的獲取算法模型的效果,搭建了專(zhuān)用于醫(yī)學(xué)影像人工智能技術(shù)的研發(fā)平臺(tái)。該平臺(tái)采用NVIDIA提供的64塊TeslaV100搭建而成,在計(jì)算能力方面表現(xiàn)突出,將傳統(tǒng)需要訓(xùn)練15 天的模型縮短至52分鐘;公司使用自主研發(fā)的超算并行訓(xùn)練軟件具有在1024GPU系統(tǒng)上保持90%的線性加速。
還有一些創(chuàng)新模式仍在進(jìn)行,位于重慶的初創(chuàng)公司鈦星區(qū)塊鏈把目光放在了因比特幣暴跌而慘遭遺棄的礦機(jī),這些天生為算力而生的機(jī)器在特殊的處理下可串聯(lián)在一起為AI運(yùn)算提供算力支持。相對(duì)于Clara輔助注釋SDK,這種方式顯得簡(jiǎn)單暴力,但也不失為廢物利用的一種優(yōu)秀方式。
總的來(lái)說(shuō),醫(yī)療產(chǎn)業(yè)將會(huì)是世界上對(duì)于計(jì)算能力需求最大的產(chǎn)業(yè),隨著研究人員在分子、原子甚至更微觀世界的透視,算力提供這筆生意或許會(huì)孕育出更多創(chuàng)新的模式,NVIDIA要想守住自己的地位,絲毫不可掉以輕心。
*文中圖片由受訪企業(yè)提供。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車(chē)電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車(chē)】汽車(chē)E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書(shū)】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專(zhuān)題
-
10 月之暗面,絕地反擊
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開(kāi)始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類(lèi)新物種登上歷史舞臺(tái)
- 5 國(guó)產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來(lái)商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽(yáng)光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開(kāi)成長(zhǎng)空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營(yíng)收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?