基于樸素貝葉斯自動過濾垃圾廣告
貝葉斯定理
貝葉斯定理是關(guān)于事件A和事件B的條件概率。先認(rèn)識一下這幾個符號:
P(A|B):表示在事件B發(fā)生的情況下事件A發(fā)生的概率
P(B|A):表示在事件A發(fā)生的情況下事件B發(fā)生的概率
通常在已知P(A|B)的情況下,計算P(B|A)的值,此時P(A|B)可以稱為先驗概率,P(B|A)稱為后驗概率。
這個時候貝葉斯定理就登場啦:
通過這個定理我們就可以計算出P(B|A)的值。舉個栗子:
一座別墅在過去的 20 年里一共發(fā)生過 2 次被盜,別墅的主人有一條狗,狗平均每周晚上叫 3 次,在盜賊入侵時狗叫的概率被估計為 0.9,在狗叫的時候發(fā)生入侵的概率是多少?
我們假設(shè) A 事件為狗在晚上叫,B 為盜賊入侵,則以天為單位統(tǒng)計,P(A) = 3/7,P(B) = 2/(20*365) = 2/7300,P(A|B) = 0.9,按照公式很容易得出結(jié)果:P(B|A) = 0.9*(2/7300) / (3/7) = 0.00058
貝葉斯定理延伸
其實到這里只是貝葉斯定理的簡單版,下面來看看它的一般版。一般事件B的發(fā)生不止有一個影響因素,比如事件B為早上是否吃早餐,那么事件A1可以為幾點起床,A2表示為早上是否有課,A3天氣是否寒冷,...An食堂早餐賣到幾點,這n個事件共同影響事件B是否吃早飯的發(fā)生,此時各事件的概率就發(fā)生了變化:
P(A)=P(A1,A2,A3,...An)
P(A|B)=P(A1,A2,A3,...An|B)
假設(shè)A1,A2,A3,...An都有兩種結(jié)果,那么一共有2^n個結(jié)果,對應(yīng)需要的樣本數(shù)也是呈指數(shù)增加,這顯然是不合實際的,這時,就提出了半樸素貝葉斯和樸素貝葉斯。
這兩個定理都有樸素二字,這二字什么意思呢?白話一點就是簡化的意思,將A1,A2,A3,...An這n個事件的關(guān)聯(lián)切斷,假設(shè)它們是相互獨立的,即P(A)=P(A1,A2,A3,...An)=P(A1)P(A2)P(A3)...P(An);
P(A|B)=P(A1,A2,A3,...An|B)=
P(A1|B)P(A2|B)P(A3|B)...P(An|B)
這么一樸素,整個過程簡單了不止一點點。但是事件A1可以為幾點起床和事件A2表示為早上是否有課真的一點關(guān)聯(lián)都沒有嗎?肯定是有關(guān)聯(lián)的,將相關(guān)性很高的一些事件提出,P(A)=P(A1,A2,A3,...An)=
P(A1)P(A2)P(A3)...P(An)P(A1A2);既不忽略事件的相關(guān)性,又擁有樸素的特性,這就叫半樸素貝葉斯。
半樸素貝葉斯
樸素貝葉斯分類的正式定義如下:
1、設(shè)
為一個待分類項,而每個a為x的一個特征屬性。
2、有類別集合
3、計算
4、如果
則
基于屬性條件獨立性假設(shè),現(xiàn)在來計算P(y1|x),P(y2|x),...P(yn|x)。
對于所有類別來說P(x)是相同的,因此只需計算分子部分。
在實際計算時,為了避免下溢(小數(shù)點位數(shù)過高),一般會對等式兩邊同時進行Ln變形,將*變?yōu)椋贿@里ln為一個增函數(shù),因此可以保證不改變P(yn|x)的大小排序。
另一個需要注意的點是:樣本數(shù)是有限的,不可能包括所有的情形,這時會出現(xiàn)P(xn|yi)=0,但是這種情況不出現(xiàn)是不等價于不發(fā)生的,這是用到拉普拉斯修正進行平滑:
P(xn|yi)=(N(結(jié)果yi發(fā)生的前提下xn發(fā)生的次數(shù))+1)/(結(jié)果yi發(fā)生的次數(shù)+屬性xn所有可能的取值)
數(shù)據(jù)預(yù)處理
上圖是這次要用到的原始數(shù)據(jù),一行代表一則廣告。ham代表有用的廣告,spam代表垃圾短信。預(yù)處理一共有三部:
第一步:將數(shù)據(jù)讀入進來。
def read_txt():
file = 'C:/Users/伊雅/Desktop/bayes.txt'
with open(file, encoding='utf-8') as f:
con = f.readlines()
return con
第二步:廣告存到dataset中,分類結(jié)果存儲到txt_class中,得到一個詞匯表將dataset中的廣告用于split為一個一個的單詞,并將長度小于1的單詞去掉(a)
def create_word_list(con):
reg = re.compile(r'W*')
dataset = []
wordlist = set([])
txt_class = []
for i in con[1:]:
dataset.a(chǎn)ppend(re.split(reg, i)[1:])
wordlist = wordlist | set(re.split(reg, i)[1:])
if re.split(reg, i)[0]=='ham':#有用的郵件
txt_class.a(chǎn)ppend(1)
else:#垃圾郵件
txt_class.a(chǎn)ppend(0)
wordlist=[i for i in wordlist if len(i)>2]
return dataset,wordlist,txt_class
第三步:對每一個廣告做循環(huán),通過函數(shù)words_vec輸入?yún)?shù)為每則廣告的單詞以及詞匯表wordlists,返回一個文檔向量,向量的每一個元素為0或1,分別表示詞匯表中的單詞在廣告次中是否出現(xiàn),如果出現(xiàn)該單詞的index則更新為1,否則則為0。
def words_vec(txt,wordlist):
returnvec=[0]*len(wordlist)
for word in txt:
if word in wordlist:
returnvec[list(wordlist).index(word)]=1
return returnvec
經(jīng)過這三步把單詞文本轉(zhuǎn)化為了數(shù)學(xué)向量,大大簡化了計算。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
推薦專題
- 1 AI 眼鏡讓百萬 APP「集體失業(yè)」?
- 2 大廠紛紛入局,百度、阿里、字節(jié)搶奪Agent話語權(quán)
- 3 深度報告|中國AI產(chǎn)業(yè)正在崛起成全球力量,市場潛力和關(guān)鍵挑戰(zhàn)有哪些?
- 4 上海跑出80億超級獨角獸:獲上市公司戰(zhàn)投,干人形機器人
- 5 國家數(shù)據(jù)局局長劉烈宏調(diào)研格創(chuàng)東智
- 6 下一代入口之戰(zhàn):大廠為何紛紛押注智能體?
- 7 百億AI芯片訂單,瘋狂傾銷中東?
- 8 Robotaxi新消息密集釋放,量產(chǎn)元年誰在領(lǐng)跑?
- 9 格斗大賽出圈!人形機器人致命短板曝光:頭腦過于簡單
- 10 “搶灘”家用機器人領(lǐng)域,聯(lián)通、海爾、美的等紛紛入局