訂閱
糾錯(cuò)
加入自媒體

谷歌李飛飛:我們依舊站在人工智能研究的起點(diǎn)

說(shuō)起人工智能,孕育了卷積神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)算法的 ImageNet 挑戰(zhàn)賽恐怕是世界上最著名的 AI 數(shù)據(jù)集。8 年來(lái),在 ImageNet 數(shù)據(jù)集的訓(xùn)練下,人工智能對(duì)于圖像識(shí)別的準(zhǔn)確度整整提高了 10 倍,甚至超越了人類(lèi)視覺(jué)本身。

然而,AI 領(lǐng)域的科學(xué)家們并沒(méi)有停下前進(jìn)的腳步。上個(gè)周末,人工智能領(lǐng)域最卓越的科學(xué)家之一:斯坦福大學(xué)終身教授、谷歌云首席科學(xué)家李飛飛在未來(lái)論壇年會(huì)上,為我們做了一場(chǎng)名為“超越 ImageNet 的視覺(jué)智能”的精彩演講。她告訴我們,AI 不僅僅能夠精準(zhǔn)辨認(rèn)物體,還能夠理解圖片內(nèi)容、甚至能根據(jù)一張圖片寫(xiě)一小段文章,還能“看懂”視頻……

我們都知道,地球上有很多種動(dòng)物,這其中的絕大多數(shù)都有眼睛,這告訴我們視覺(jué)是最為重要的一種感覺(jué)和認(rèn)知方式。它對(duì)動(dòng)物的生存和發(fā)展至關(guān)重要。

所以無(wú)論我們?cè)谟懻搫?dòng)物智能還是機(jī)器智能,視覺(jué)是非常重要的基石。世界上所存在的這些系統(tǒng)當(dāng)中,我們目前了解最深入的是人類(lèi)的視覺(jué)系統(tǒng)。從 5 億多年前寒武紀(jì)大爆發(fā)開(kāi)始,我們的視覺(jué)系統(tǒng)就不斷地進(jìn)化發(fā)展,這一重要的過(guò)程得以讓我們理解這個(gè)世界。而且視覺(jué)系統(tǒng)是我們大腦當(dāng)中最為復(fù)雜的系統(tǒng),大腦中負(fù)責(zé)視覺(jué)加工的皮層占所有皮層的 50%,這告訴我們,人類(lèi)的視覺(jué)系統(tǒng)非常了不起。

寒武紀(jì)物種大爆發(fā)

一位認(rèn)知心理學(xué)家做過(guò)一個(gè)非常著名的實(shí)驗(yàn),這個(gè)實(shí)驗(yàn)?zāi)芨嬖V大家,人類(lèi)的視覺(jué)體系有多么了不起。大家看一下這個(gè)視頻,你的任務(wù)是如果看到一個(gè)人的話就舉手。每張圖呈現(xiàn)的時(shí)間是非常短的,也就是 1/10 秒。不僅這樣,如果讓大家去尋找一個(gè)人,你并不知道對(duì)方是什么樣的人,或者 TA 站在哪里,用什么樣的姿勢(shì),穿什么樣的衣服,然而你仍然能快速準(zhǔn)確地識(shí)別出這個(gè)人。

1996 年的時(shí)候,法國(guó)著名的心理學(xué)家、神經(jīng)科學(xué)家 Simon J. Thorpe 的論文證明出視覺(jué)認(rèn)知能力是人類(lèi)大腦當(dāng)中最為了不起的能力,因?yàn)樗乃俣确浅?欤蟾攀?150 毫秒。在 150 毫秒之內(nèi),我們的大腦能夠把非常復(fù)雜的含動(dòng)物和不含動(dòng)物的圖像區(qū)別出來(lái)。那個(gè)時(shí)候計(jì)算機(jī)與人類(lèi)存在天壤之別,這激勵(lì)著計(jì)算機(jī)科學(xué)家,他們希望解決的最為基本的問(wèn)題就是圖像識(shí)別問(wèn)題。

在 ImageNet 之外,在單純的物體識(shí)別之外,我們還能做些什么?

過(guò)了 20 年到現(xiàn)在,計(jì)算機(jī)領(lǐng)域內(nèi)的專(zhuān)家們也針對(duì)物體識(shí)別發(fā)明了幾代技術(shù),這個(gè)就是眾所周知的 ImageNet。我們?cè)趫D像識(shí)別領(lǐng)域內(nèi)取得了非常大的進(jìn)步:8 年的時(shí)間里,在 ImageNet 挑戰(zhàn)賽中,計(jì)算機(jī)對(duì)圖像分類(lèi)的錯(cuò)誤率降低了 10 倍。同時(shí),這 8 年當(dāng)中一項(xiàng)巨大的革命也出現(xiàn)了: 2012 年,卷積神經(jīng)網(wǎng)絡(luò)(convolutionary neural network)和 GPU(圖形處理器,Graphic Processing Unit)技術(shù)的出現(xiàn),對(duì)于計(jì)算機(jī)視覺(jué)和人工智能研究來(lái)說(shuō)是個(gè)非常令人激動(dòng)的進(jìn)步。作為科學(xué)家,我也在思考,在 ImageNet 之外,在單純的物體識(shí)別之外,我們還能做些什么?

8年的時(shí)間里,在ImageNet挑戰(zhàn)賽中,計(jì)算機(jī)對(duì)圖像分類(lèi)的錯(cuò)誤率降低了10倍。

通過(guò)一個(gè)例子告訴大家:兩張圖片,都包含一個(gè)動(dòng)物和一個(gè)人,如果只是單純的觀察這兩張圖中出現(xiàn)的事物,這兩張圖是非常相似的,但是他們呈現(xiàn)出來(lái)的故事卻是完全不同的。當(dāng)然你肯定不想出現(xiàn)在右邊這張圖的場(chǎng)景當(dāng)中。

這里體現(xiàn)出了一個(gè)非常重要的問(wèn)題,也就是人類(lèi)能夠做到的、最為重要、最為基礎(chǔ)的圖像識(shí)別功能——理解圖像中物體之間的關(guān)系。為了模擬人類(lèi),在計(jì)算機(jī)的圖像識(shí)別任務(wù)中,輸入的是圖像,計(jì)算機(jī)所輸出的信息包括圖像中的物體、它們所處的位置以及物體之間的關(guān)系。目前我們有一些前期工作,但是絕大多數(shù)由計(jì)算機(jī)所判斷的物體之間的關(guān)系都是十分有限的。

1  2  下一頁(yè)>  
聲明: 本文由入駐維科號(hào)的作者撰寫(xiě),觀點(diǎn)僅代表作者本人,不代表OFweek立場(chǎng)。如有侵權(quán)或其他問(wèn)題,請(qǐng)聯(lián)系舉報(bào)。

發(fā)表評(píng)論

0條評(píng)論,0人參與

請(qǐng)輸入評(píng)論內(nèi)容...

請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字

您提交的評(píng)論過(guò)于頻繁,請(qǐng)輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無(wú)評(píng)論

暫無(wú)評(píng)論

    掃碼關(guān)注公眾號(hào)
    OFweek人工智能網(wǎng)
    獲取更多精彩內(nèi)容
    文章糾錯(cuò)
    x
    *文字標(biāo)題:
    *糾錯(cuò)內(nèi)容:
    聯(lián)系郵箱:
    *驗(yàn) 證 碼:

    粵公網(wǎng)安備 44030502002758號(hào)