人工智能之PCA算法
前言:人工智能機器學習有關算法內(nèi)容,人工智能之機器學習主要有三大類:1)分類;2)回歸;3)聚類。今天我們重點探討一下PCA算法。
PCA(主成分分析)是十大經(jīng)典機器學習算法之一。PCA是Pearson在1901年提出的,后來由Hotelling在1933年加以發(fā)展提出的一種多變量的統(tǒng)計方法。
對于維數(shù)比較多的數(shù)據(jù),首先需要做的事就是在盡量保證數(shù)據(jù)本質的前提下將數(shù)據(jù)中的維數(shù)降低。降維是一種數(shù)據(jù)集預處理技術,往往在數(shù)據(jù)應用在其他算法之前使用,它可以去除掉數(shù)據(jù)的一些冗余信息和噪聲,使數(shù)據(jù)變得更加簡單高效,從而實現(xiàn)提升數(shù)據(jù)處理速度的目的,節(jié)省大量的時間和成本。降維也成為了應用非常廣泛的數(shù)據(jù)預處理方法。目前處理降維的技術有很多種,如SVD奇異值分解,主成分分析(PCA),因子分析(FA),獨立成分分析(ICA)等。今天重點介紹主成分分析(PCA)。
PCA(主成分分析)算法目的是在“信息”損失較小的前提下,將高維的數(shù)據(jù)轉換到低維,通過析取主成分顯出的最大的個別差異,也可以用來削減回歸分析和聚類分析中變量的數(shù)目,從而減小計算量。
PCA(主成分分析)通常用于高維數(shù)據(jù)集的探索與可視化,還可以用于數(shù)據(jù)壓縮,數(shù)據(jù)預處理等。
PCA算法概念:
PCA(PrincipalComponent Analysis)主成分分析,也稱為卡爾胡寧-勒夫變換(Karhunen-Loeve Transform),是一種用于探索高維數(shù)據(jù)結構的技術。
PCA是一種較為常用的降維技術,PCA的思想是將維特征映射到維上,這維是全新的正交特征。這維特征稱為主元,是重新構造出來的維特征。在PCA中,數(shù)據(jù)從原來的坐標系轉換到新的坐標系下,新的坐標系的選擇與數(shù)據(jù)本身是密切相關的。第一個新坐標軸選擇的是原始數(shù)據(jù)中方差最大的方向,第二個新坐標軸選擇和第一個坐標軸正交且具有最大方差的方向。該過程一直重復,重復次數(shù)為原始數(shù)據(jù)中特征的數(shù)目。大部分方差都包含在最前面的幾個新坐標軸中。因此,可以忽略余下的坐標軸,即對數(shù)據(jù)進行降維處理。
PCA算法本質:
PCA算法本質就是找一些投影方向,使得數(shù)據(jù)在這些投影方向上的方差最大,而且這些投影方向是相互正交的。這其實就是找新的正交基的過程,計算原始數(shù)據(jù)在這些正交基上投影的方差,方差越大,就說明在對應正交基上包含了更多的信息量。原始數(shù)據(jù)協(xié)方差矩陣的特征值越大,對應的方差越大,在對應的特征向量上投影的信息量就越大。反之,如果特征值較小,則說明數(shù)據(jù)在這些特征向量上投影的信息量很小,可以將小特征值對應方向的數(shù)據(jù)刪除,從而達到了降維的目的。
PCA把可能具有相關性的高維變量合成線性無關的低維變量,稱為主成分( principal components)。新的低維數(shù)據(jù)集會盡可能保留原始數(shù)據(jù)的變量。
簡而言之,PCA本質上是將方差最大的方向作為主要特征,并且在各個正交方向上將數(shù)據(jù)“離相關”,也就是讓它們在不同正交方向上沒有相關性。
PCA算法中術語:
1、樣本“信息量”
樣本的“信息量”指的是樣本在特征方向上投影的方差。方差越大,則樣本在該特征上的差異就越大,因此該特征就越重要。在分類問題里,樣本的方差越大,越容易將不同類別的樣本區(qū)分開。
2、方差
希望投影后投影值盡可能分散,而這種分散程度,可以用數(shù)學上的方差來表述。在統(tǒng)計描述中,方差用來計算每一個變量(觀察值)與總體均數(shù)之間的差異。此處,一個字段的方差可以看做是每個元素與字段均值的差的平方和的均值,即:
3、協(xié)方差
對于二維降成一維的問題來說,找到使得方差最大的方向就可以了。但是對于更高維的問題,需要用到協(xié)方差來表示其相關性。即:
PCA理論基礎:
PCA理論基礎如下:
1)最大方差理論。
2)最小錯誤理論。
3)坐標軸相關度理論。
PCA算法流程:
1)去平均值,即每一位特征減去各自的平均值;
2)計算協(xié)方差矩陣;
3)計算協(xié)方差矩陣的特征值與特征向量;
4)對特征值從大到小排序;
5)保留最大的個特征向量;
6)將數(shù)據(jù)轉換到個特征向量構建的新空間中。
PCA降維準則:
1) 最近重構性:樣本集中所有點,重構后的點距離原來的點的誤差之和最小。
2) 最大可分性:樣本在低維空間的投影盡可能分開。
PCA算法優(yōu)點:
1)使得數(shù)據(jù)集更易使用;
2)降低算法的計算開銷;
3)去除噪聲;
4)使得結果容易理解;
5)完全無參數(shù)限制。
PCA算法缺點:
1) 如果用戶對觀測對象有一定的先驗知識,掌握了數(shù)據(jù)的一些特征,卻無法通過參數(shù)化等方法對處理過程進行干預,可能會得不到預期的效果,效率也不高;
2) 特征值分解有一些局限性,比如變換的矩陣必須是方陣;
3) 在非高斯分布情況下,PCA方法得出的主元可能并不是最優(yōu)的。
PCA算法應用:
PCA算法已經(jīng)被廣泛的應用于高維數(shù)據(jù)集的探索與可視化,還可以用于數(shù)據(jù)壓縮,數(shù)據(jù)預處理等領域。在機器學習當中應用很廣,比如圖像,語音,通信的分析處理。PCA算法最主要的用途在于“降維”,去除掉數(shù)據(jù)的一些冗余信息和噪聲,使數(shù)據(jù)變得更加簡單高效,提高其他機器學習任務的計算效率。
結語:
PCA是一種常用的數(shù)據(jù)分析方法。PCA通過線性變換將原始數(shù)據(jù)變換為一組各維度線性無關的表示,可用于識別和提取數(shù)據(jù)的主要特征分量,通過將數(shù)據(jù)坐標軸旋轉到數(shù)據(jù)角度上那些最重要的方向(方差最大);然后通過特征值分析,確定出需要保留的主成分個數(shù),舍棄其他非主成分,從而實現(xiàn)數(shù)據(jù)的降維。降維使數(shù)據(jù)變得更加簡單高效,從而實現(xiàn)提升數(shù)據(jù)處理速度的目的,節(jié)省大量的時間和成本。降維也成為了應用非常廣泛的數(shù)據(jù)預處理方法。PCA算法已經(jīng)被廣泛的應用于高維數(shù)據(jù)集的探索與可視化,還可以用于數(shù)據(jù)壓縮,數(shù)據(jù)預處理,圖像,語音,通信的分析處理等領域。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀”爆發(fā)至今,五類新物種登上歷史舞臺
- 5 國產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計算迎來商業(yè)化突破,但落地仍需時間
- 7 東陽光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長空間
- 8 地平線自動駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營收大增主靠小件,虧損繼續(xù)又逢關稅,能否乘機器人東風翻身?