OpenCV系列之圖像梯度 | 十八
目標(biāo)
在本章中,我們將學(xué)習(xí):
查找圖像梯度,邊緣等
我們將看到以下函數(shù):cv.Sobel(),cv.Scharr(),cv.Laplacian()等
理論
OpenCV提供三種類型的梯度濾波器或高通濾波器,即Sobel,Scharr和Laplacian。我們將看到他們每一種。
1. Sobel 和 Scharr 算子
Sobel算子是高斯平滑加微分運(yùn)算的聯(lián)合運(yùn)算,因此它更抗噪聲。逆可以指定要采用的導(dǎo)數(shù)方向,垂直或水平(分別通過(guò)參數(shù)yorder和xorder)。逆還可以通過(guò)參數(shù)ksize指定內(nèi)核的大小。如果ksize = -1,則使用3x3 Scharr濾波器,比3x3 Sobel濾波器具有更好的結(jié)果。請(qǐng)參閱文檔以了解所使用的內(nèi)核。
2. Laplacian 算子
它計(jì)算了由關(guān)系
給出的圖像的拉普拉斯圖,它是每一階導(dǎo)數(shù)通過(guò)Sobel算子計(jì)算。如果ksize = 1,然后使用以下內(nèi)核用于過(guò)濾:
代碼
下面的代碼顯示了單個(gè)圖表中的所有算子。所有內(nèi)核都是5x5大小。輸出圖像的深度通過(guò)-1得到結(jié)果的np.uint8型。
kernel = egin{bmatrix} 0 & 1 & 0 1 & -4 & 1 0 & 1 & 0 end{bm下面的代碼顯示了單個(gè)圖表中的所有算子。所有內(nèi)核都是5x5大小。輸出圖像的深度通過(guò)-1得到結(jié)果的np.uint8型。
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('dave.jpg',0)
laplacian = cv.Laplacian(img,cv.CV_64F)
sobelx = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
sobely = cv.Sobel(img,cv.CV_64F,0,1,ksize=5)
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()
結(jié)果:
gradients
一個(gè)重要事項(xiàng)
在我們的最后一個(gè)示例中,輸出數(shù)據(jù)類型為cv.CV_8U或np.uint8。但這有一個(gè)小問(wèn)題。黑色到白色的過(guò)渡被視為正斜率(具有正值),而白色到黑色的過(guò)渡被視為負(fù)斜率(具有負(fù)值)。因此,當(dāng)您將數(shù)據(jù)轉(zhuǎn)換為np.uint8時(shí),所有負(fù)斜率均設(shè)為零。簡(jiǎn)而言之,您會(huì)錯(cuò)過(guò)這一邊緣信息。
如果要檢測(cè)兩個(gè)邊緣,更好的選擇是將輸出數(shù)據(jù)類型保留為更高的形式,例如cv.CV_16S,cv.CV_64F等,取其絕對(duì)值,然后轉(zhuǎn)換回cv.CV_8U。
下面的代碼演示了用于水平Sobel濾波器和結(jié)果差異的此過(guò)程。
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('box.png',0)
# Output dtype = cv.CV_8U
sobelx8u = cv.Sobel(img,cv.CV_8U,1,0,ksize=5)
# Output dtype = cv.CV_64F. Then take its absolute and convert to cv.CV_8U
sobelx64f = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
abs_sobel64f = np.a(chǎn)bsolute(sobelx64f)
sobel_8u = np.uint8(abs_sobel64f)
plt.subplot(1,3,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2),plt.imshow(sobelx8u,cmap = 'gray')
plt.title('Sobel CV_8U'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3),plt.imshow(sobel_8u,cmap = 'gray')
plt.title('Sobel abs(CV_64F)'), plt.xticks([]), plt.yticks([])
plt.show()
查看以下結(jié)果:
double_edge
不斷更新資源
獲取更多精彩

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車】汽車E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 5 國(guó)產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來(lái)商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽(yáng)光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長(zhǎng)空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營(yíng)收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?