傳統(tǒng)計算機視覺融合深度學習 助力AI發(fā)展
機器學習不斷推動視覺物聯(lián)網(wǎng)應用變革,將經(jīng)典的計算機視覺與深度學習相結合進行的研究,則顯示出了更好的成果。
計算機視覺是物聯(lián)網(wǎng)(IoT)廣泛應用的基礎。家庭成員通過安裝了攝像頭的家庭監(jiān)控系統(tǒng)就能了解家里的所有情況。機器人和無人機使用視覺系統(tǒng)映射環(huán)境并避免行進中的障礙物。增強現(xiàn)實眼鏡使用計算機視覺來覆蓋用戶視圖上的重要信息;汽車通過來自安裝在車輛上多個照相機捕捉的圖像,向駕駛員提供有助于防止碰撞的環(huán)繞或“鳥瞰”視圖。各種應用案例數(shù)不勝數(shù)。
多年來,設備功能(包括計算能力、內(nèi)存容量、功耗、圖像傳感器分辨率以及光學系數(shù))的指數(shù)式演變提高了物聯(lián)網(wǎng)應用中計算機視覺的性能和成本效益。伴隨這些而來的是精密軟件算法的發(fā)展和完善,例如人臉檢測和識別、物體檢測和分類以及同步定位和映射等。
機器學習的興起和面臨的挑戰(zhàn)
近年來,人工智能(AI),尤其是深度學習的發(fā)展,進一步加快了物聯(lián)網(wǎng)視覺應用的激增。與傳統(tǒng)的計算機視覺技術相比,深度學習為物聯(lián)網(wǎng)開發(fā)人員在諸如目標分類等任務方面提供了更高的準確性。由于深度學習中使用的神經(jīng)網(wǎng)絡是“通過訓練”而不是“編程”實現(xiàn)的,使用這種方法的應用通常更易進行開發(fā),從而更好地利用當前系統(tǒng)中可用的大量圖像和視頻數(shù)據(jù)。深度學習還提供了卓越的多功能性,這是因為與針對性更強的計算機視覺算法相比,神經(jīng)網(wǎng)絡研究和框架的用途更廣。
但是,深度學習的優(yōu)勢并非沒有權衡和挑戰(zhàn)。深度學習需要大量的計算資源,用于訓練和推測階段。最近的研究表明,不同的深度學習模型所需的計算能力與深度學習技術的精度之間存在緊密的關系。在基于視覺的應用程序中,從75%到80%的精度轉(zhuǎn)變可能需要不少于數(shù)十億次額外的數(shù)學運算。
使用深度學習的視覺處理結果也取決于圖像分辨率。例如,為了在目標分類過程中獲得最充分的表現(xiàn)需要高分辨率的圖像或視頻,從而提升了需要處理、存儲和傳輸?shù)臄?shù)據(jù)量。圖像分辨率對于需要在遠處探測和目標分類的應用尤為重要,例如企業(yè)安防攝像頭。
計算機視覺與機器學習結合以獲得更佳性能
傳統(tǒng)的計算機視覺和深度學習方法之間有明顯的折中。傳統(tǒng)的計算機視覺算法已經(jīng)成熟,經(jīng)過驗證,并且在性能和功率效率方面進行了優(yōu)化;而深度學習能提供更高的精度和多功能性,但是需要大量的計算資源。
那些希望快速實施高性能系統(tǒng)的用戶發(fā)現(xiàn),將傳統(tǒng)計算機視覺和深度學習相結合的混合方法可以提供兩全其美的解決方案。例如,在安防攝像頭中,計算機視覺算法可以有效地檢測場景中的人臉或移動物體。然后,通過深度學習來處理檢測到的面部或目標圖像的較小片段,以進行身份驗證或目標分類。與整個場景、每幀深度學習相比,節(jié)省了大量的計算資源。
充分利用邊緣計算
就像使用純粹的深度學習一樣,用于視覺處理的混合方法可以充分利用邊緣的異構計算能力。異構計算架構有助于提高視覺處理性能和能效,為不同的工作負載分配最高效的計算引擎。當深度學習推斷是在DSP上執(zhí)行而不是在CPU上執(zhí)行時,測試結果顯示目標檢測延遲降低了10倍。
與云計算相比,在物聯(lián)網(wǎng)設備本身上運行算法和神經(jīng)網(wǎng)絡推斷也有助于降低延遲和帶寬要求。邊緣計算還可以通過減少云存儲和處理要求來降低成本,同時通過避免在網(wǎng)絡上傳輸敏感或可識別的數(shù)據(jù)來保護用戶的隱私和安全。
深度學習創(chuàng)新正在推動物聯(lián)網(wǎng)突破,以及將這些技術與傳統(tǒng)算法相結合的混合技術的發(fā)展。視覺處理只是一個開始,因為相同的原則可以應用于其他領域,如音頻分析等。隨著邊緣設備變得更加智能和強大,創(chuàng)新者可以開始構建此前無法實現(xiàn)的產(chǎn)品和應用。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀”爆發(fā)至今,五類新物種登上歷史舞臺
- 5 國產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計算迎來商業(yè)化突破,但落地仍需時間
- 7 東陽光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長空間
- 8 地平線自動駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營收大增主靠小件,虧損繼續(xù)又逢關稅,能否乘機器人東風翻身?