如何使用 Python比較兩張圖像并獲得準確度?
本文,將帶你了解如何使用 Python、OpenCV 和人臉識別模塊比較兩張圖像并獲得這些圖像之間的準確度水平。
首先,你需要了解我們是如何比較兩個圖像的。我們正在使用Face Recognition python 模塊來獲取兩張圖像的128 個面部編碼,我們將比較這些編碼。比較結(jié)果返回 True 或 False。如果結(jié)果為True ,那么兩個圖像將是相同的。如果是False,則兩個圖像將不相同。
128 種面部編碼將如下所示
128 個人臉編碼(人臉標志)
僅當(dāng)比較結(jié)果返回 True 值時,才會打印準確度級別。
現(xiàn)在,讓我們進入本主題的編碼部分,
為了實現(xiàn)這一點,我們需要安裝幾個 python 模塊。為此,只需打開命令提示符或終端,鍵入以下內(nèi)容。
pip install opencv-python
pip install face-recognition
安裝后,現(xiàn)在是時候?qū)脒@些模塊了。然后,我們需要創(chuàng)建一個名為 find_face_encodings(image_path) 的新函數(shù),它獲取圖像位置(路徑)并返回 128 個面部編碼,這在比較圖像時非常有用。
find_face_encodings(image_path) 函數(shù)將使用 OpenCV 模塊,從我們作為參數(shù)傳遞的路徑中讀取圖像,然后返回使用 face_recognition 模塊中的 face_encodings() 函數(shù)獲得的 128 個人臉編碼。
import cv2
import face_recognition
def find_face_encodings(image_path):
# reading image
image = cv2.imread(image_path)
# get face encodings from the image
face_enc = face_recognition.face_encodings(image)
# return face encodings
return face_enc[0]
現(xiàn)在,使用兩個不同的圖像路徑調(diào)用 find_face_encodings(image_path) 函數(shù),并將其存儲在兩個不同的變量中,image_1和image_2
# getting face encodings for first image
image_1 = find_face_encodings("image_1.jpg")
# getting face encodings for second image
image_2 = find_face_encodings("image_2.jpg")
現(xiàn)在,我們可以使用編碼執(zhí)行比較和查找這些圖像的準確性等操作。
· 比較將通過使用 face_recognition 中的 compare_faces() 函數(shù)來完成。
· 通過找到 100 和 face_distance 之間的差異來確定準確性。
# checking both images are same
is_same = face_recognition.compare_faces([image_1], image_2)[0]
print(f"Is Same: {is_same}")
if is_same:
# finding the distance level between images
distance = face_recognition.face_distance([image_1], image_2)
distance = round(distance[0] * 100)
# calcuating accuracy level between images
accuracy = 100 - round(distance)
print("The images are same")
print(f"Accuracy Level: {accuracy}%")
else:
print("The images are not same")
輸出——案例 1
Is Same: True
The images are same
Accuracy Level: 64%
輸出——案例 2
Is Same: False
The images are not same
原文標題 : 如何使用 Python比較兩張圖像并獲得準確度?

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
推薦專題
- 1 AI 眼鏡讓百萬 APP「集體失業(yè)」?
- 2 大廠紛紛入局,百度、阿里、字節(jié)搶奪Agent話語權(quán)
- 3 深度報告|中國AI產(chǎn)業(yè)正在崛起成全球力量,市場潛力和關(guān)鍵挑戰(zhàn)有哪些?
- 4 上海跑出80億超級獨角獸:獲上市公司戰(zhàn)投,干人形機器人
- 5 國家數(shù)據(jù)局局長劉烈宏調(diào)研格創(chuàng)東智
- 6 下一代入口之戰(zhàn):大廠為何紛紛押注智能體?
- 7 百億AI芯片訂單,瘋狂傾銷中東?
- 8 Robotaxi新消息密集釋放,量產(chǎn)元年誰在領(lǐng)跑?
- 9 格斗大賽出圈!人形機器人致命短板曝光:頭腦過于簡單
- 10 “搶灘”家用機器人領(lǐng)域,聯(lián)通、海爾、美的等紛紛入局