如何使用 Python比較兩張圖像并獲得準(zhǔn)確度?
本文,將帶你了解如何使用 Python、OpenCV 和人臉識(shí)別模塊比較兩張圖像并獲得這些圖像之間的準(zhǔn)確度水平。
首先,你需要了解我們是如何比較兩個(gè)圖像的。我們正在使用Face Recognition python 模塊來(lái)獲取兩張圖像的128 個(gè)面部編碼,我們將比較這些編碼。比較結(jié)果返回 True 或 False。如果結(jié)果為True ,那么兩個(gè)圖像將是相同的。如果是False,則兩個(gè)圖像將不相同。
128 種面部編碼將如下所示
128 個(gè)人臉編碼(人臉標(biāo)志)
僅當(dāng)比較結(jié)果返回 True 值時(shí),才會(huì)打印準(zhǔn)確度級(jí)別。
現(xiàn)在,讓我們進(jìn)入本主題的編碼部分,
為了實(shí)現(xiàn)這一點(diǎn),我們需要安裝幾個(gè) python 模塊。為此,只需打開(kāi)命令提示符或終端,鍵入以下內(nèi)容。
pip install opencv-python
pip install face-recognition
安裝后,現(xiàn)在是時(shí)候?qū)脒@些模塊了。然后,我們需要?jiǎng)?chuàng)建一個(gè)名為 find_face_encodings(image_path) 的新函數(shù),它獲取圖像位置(路徑)并返回 128 個(gè)面部編碼,這在比較圖像時(shí)非常有用。
find_face_encodings(image_path) 函數(shù)將使用 OpenCV 模塊,從我們作為參數(shù)傳遞的路徑中讀取圖像,然后返回使用 face_recognition 模塊中的 face_encodings() 函數(shù)獲得的 128 個(gè)人臉編碼。
import cv2
import face_recognition
def find_face_encodings(image_path):
# reading image
image = cv2.imread(image_path)
# get face encodings from the image
face_enc = face_recognition.face_encodings(image)
# return face encodings
return face_enc[0]
現(xiàn)在,使用兩個(gè)不同的圖像路徑調(diào)用 find_face_encodings(image_path) 函數(shù),并將其存儲(chǔ)在兩個(gè)不同的變量中,image_1和image_2
# getting face encodings for first image
image_1 = find_face_encodings("image_1.jpg")
# getting face encodings for second image
image_2 = find_face_encodings("image_2.jpg")
現(xiàn)在,我們可以使用編碼執(zhí)行比較和查找這些圖像的準(zhǔn)確性等操作。
· 比較將通過(guò)使用 face_recognition 中的 compare_faces() 函數(shù)來(lái)完成。
· 通過(guò)找到 100 和 face_distance 之間的差異來(lái)確定準(zhǔn)確性。
# checking both images are same
is_same = face_recognition.compare_faces([image_1], image_2)[0]
print(f"Is Same: {is_same}")
if is_same:
# finding the distance level between images
distance = face_recognition.face_distance([image_1], image_2)
distance = round(distance[0] * 100)
# calcuating accuracy level between images
accuracy = 100 - round(distance)
print("The images are same")
print(f"Accuracy Level: {accuracy}%")
else:
print("The images are not same")
輸出——案例 1
Is Same: True
The images are same
Accuracy Level: 64%
輸出——案例 2
Is Same: False
The images are not same
原文標(biāo)題 : 如何使用 Python比較兩張圖像并獲得準(zhǔn)確度?

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車】汽車E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書(shū)】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開(kāi)始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 5 國(guó)產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來(lái)商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽(yáng)光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開(kāi)成長(zhǎng)空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營(yíng)收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?